Abstract
Flexible/soft manipulators have the potential to maneuver in confined space and reach deeply-seated targets via curvy trajectories, thus enjoy increasing popularity in minimally invasive surgery (MIS) community. We aim to automate palpation movement for this type of robots, an important procedure for disease diagnosis, where multiple force and pose requirements are to be achieved simultaneously. It’s challenging to obtain accurate models due to the system’s inherent nonlinearities and actuation hysteresis. Moreover, unknown contact transitions and high-dimensionality specific to the palpation task, pose great challenges to deriving optimal task policies. We employ the model-free reinforcement learning method for learning palpation skills through deterministic policy gradient, whose reward function was carefully shaped to accommodate all the task objectives. In addition, we design a safety check routine to avoid undesirable collisions and a dedicated initialization process for generalization to various environment conditions. We demonstrate successful implementation of the learning framework in simulation and real world. The trained policy succeeds in automating the designed tasks.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abidi, H., Gerboni, G., Brancadoro, M., Fras, J., Diodato, A., Cianchetti, M., Wurdemann, H., Althoefer, K., Menciassi, A.: Highly dexterous 2-module soft robot for intra-organ navigation in minimally invasive surgery. Int. J. Med. Robot. Comput. Assist. Surg. 14(1), e1875 (2018)
Abushagur, A.A., Arsad, N., Reaz, M.I., Bakar, A.: Advances in bio-tactile sensors for minimally invasive surgery using the fibre bragg grating force sensor technique: A survey. Sensors 14(4), 6633–6665 (2014)
Ahn, B., Park, K., Lee, H., Lorenzo, E.I.S., Rha, K.H., Kim, J.: Robotic palpation system for prostate cancer detection. In: Proceedings of the 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 644–649. IEEE (2010)
Ahn, B., Kim, Y., Oh, C.K., Kim, J.: Robotic palpation and mechanical property characterization for abnormal tissue localization. Med. Biol. Eng. Comput. 50(9), 961–971 (2012)
Ansari, Y., Manti, M., Falotico, E., Cianchetti, M., Laschi, C.: Multiobjective optimization for stiffness and position control in a soft robot arm module. IEEE Robot. Autom. Lett. 3(1), 108–115 (2018)
Burgner, J., Rucker, D.C., Gilbert, H.B., Swaney, P.J., Russell, P.T., Weaver, K.D., Webster, R.J.: A telerobotic system for transnasal surgery. IEEE/ASME Trans. Mechatron. 19(3), 996–1006 (2014)
Calinon, S., Bruno, D., Malekzadeh, M.S., Nanayakkara, T., Caldwell, D.G.: Human-robot skills transfer interfaces for a flexible surgical robot. Comput. Methods Progr. Biomed. 116(2), 81–96 (2014)
Chen, Y., Xu, W., Li, Z., Song, S., Lim, C.M., Wang, Y., Ren, H.: Safety-enhanced motion planning for flexible surgical manipulator using neural dynamics. IEEE Trans. Control Syst. Technol. PP(99), 1–13 (2016)
Chen, F., Xu, W., Zhang, H., Wang, Y., Cao, J., Wang, M.Y., Ren, H., Zhu, J., Zhang, Y.: Topology optimized design, fabrication, and characterization of a soft cable-driven gripper. IEEE Robot. Autom. Lett. 3(3), 2463–2470 (2018)
Critch, A.: Toward negotiable reinforcement learning: shifting priorities in pareto optimal sequential decision-making (2017). arXiv:1701.01302 (arXiv preprint)
Garcıa, J., Fernández, F.: A comprehensive survey on safe reinforcement learning. J. Mach. Learn. Res. 16(1), 1437–1480 (2015)
García, J., Iglesias, R., Rodríguez, M.A., Regueiro, C.V.: Incremental reinforcement learning for multi-objective robotic tasks. Knowl. Inf. Syst. 51(3), 911–940 (2017)
George Thuruthel, T., Falotico, E., Manti, M., Pratesi, A., Cianchetti, M., Laschi, C.: Learning closed loop kinematic controllers for continuum manipulators in unstructured environments. Soft Robot. 4(3), 285–296 (2017)
Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. In: Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3389–3396. IEEE (2017)
Gupta, A., Eppner, C., Levine, S., Abbeel, P.: Learning dexterous manipulation for a soft robotic hand from human demonstrations. In: Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3786–3793. IEEE (2016)
Herzig, N., Maiolino, P., Iida, F., Nanayakkara, T.: A variable stiffness robotic probe for soft tissue palpation. IEEE Robot. Autom. Lett. 3(2), 1168–1175 (2018)
Hwangbo, J., Sa, I., Siegwart, R., Hutter, M.: Control of a quadrotor with reinforcement learning. IEEE Robot. Autom. Lett. 2(4), 2096–2103 (2017)
Hwangbo, J., Lee, J., Dosovitskiy, A., Bellicoso, D., Tsounis, V., Koltun, V., Hutter, M.: Learning agile and dynamic motor skills for legged robots. Sci. Robot. 4(26), eaau5872 (2019)
Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. Int. J. Robot. Res. 32(11), 1238–1274 (2013)
Konstantinova, J., Cotugno, G., Dasgupta, P., Althoefer, K., Nanayakkara, T.: Autonomous robotic palpation of soft tissue using the modulation of applied force. In: Proceedings of the 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 323–328. IEEE (2016)
Konstantinova, J., Jiang, A., Althoefer, K., Dasgupta, P., Nanayakkara, T.: Implementation of tactile sensing for palpation in robot-assisted minimally invasive surgery: a review. IEEE Sens. J. 14(8), 2490–2501 (2014)
Konstantinova, J., Cotugno, G., Dasgupta, P., Althoefer, K., Nanayakkara, T.: Palpation force modulation strategies to identify hard regions in soft tissue organs. PLoS One 12(2), e0171706 (2017)
Kwon, Y.S., Tae, K., Yi, B.J.: Suspension laryngoscopy using a curved-frame trans-oral robotic system. Int. J. Comput. Assist. Radiol. Surg. 9(4), 535–40 (2014)
Lee, K.H., Fu, D.K., Leong, M.C., Chow, M., Fu, H.C., Althoefer, K., Sze, K.Y., Yeung, C.K., Kwok, K.W.: Nonparametric online learning control for soft continuum robot: An enabling technique for effective endoscopic navigation. Soft Robot. 4(4), 324–337 (2017)
Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.: Continuous control with deep reinforcement learning (2015). arXiv:1509.02971 (arXiv preprint)
Ma, X., Wang, P., Ye, M., Chiu, P.W.Y., Li, Z.: Shared autonomy of a flexible manipulator in constrained endoluminal surgical tasks. IEEE Robot. Autom. Lett. 4(3), 3106–3112 (2019). https://doi.org/10.1109/LRA.2019.2924851
Malekzadeh, M.S., Bruno, D., Calinon, S., Nanayakkara, T., Caldwell, D.G.: Skills transfer across dissimilar robots by learning context-dependent rewards. In: Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1746–1751. IEEE (2013)
Malekzadeh, M.S., Calinon, S., Bruno, D., Caldwell, D.G.: Learning by imitation with the stiff-flop surgical robot: a biomimetic approach inspired by octopus movements. Robot. Biomim. 1(1), 13 (2014)
Nichols, K.A., Okamura, A.M.: Autonomous robotic palpation: Machine learning techniques to identify hard inclusions in soft tissues. In: Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 4384–4389. IEEE (2013)
Nichols, K.A., Okamura, A.M.: Methods to segment hard inclusions in soft tissue during autonomous robotic palpation. IEEE Trans. Robot. 31(2), 344–354 (2015)
Osa, T., Sugita, N., Mitsuishi, M.: Online trajectory planning and force control for automation of surgical tasks. IEEE Trans. Autom. Sci. Eng. 15(2), 675–691 (2018)
Ottermo, M.V., Stavdahl, O., Johansen, T.A.: Palpation instrument for augmented minimally invasive surgery. In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 4, pp. 3960–3964. IEEE (2004)
Pham, T.H., De Magistris, G., Tachibana, R.: Optlayer-practical constrained optimization for deep reinforcement learning in the real world. In: Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 6236–6243. IEEE (2018)
Reichert, B., Stelzenmueller, W.: Palpation Techniques: Surface Anatomy for Physical Therapists. Thieme, Stuttgart (2011)
Roy, N., Newman, P., Srinivasa, S.: Tendon-Driven Variable Impedance Control Using Reinforcement Learning. MITP (2013). https://ieeexplore.ieee.org/document/6577948
Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.: Deterministic policy gradient algorithms. In: Proceedings of the 31st International Conference on Machine Learning, Proceedings of Machine Learning Research, pp. 387–395. PMLR, Bejing, China (2014)
Solodova, R.F., Galatenko, V.V., Nakashidze, E.R., Shapovalyants, S.G., Andreytsev, I.L., Sokolov, M.E., Podolskii, V.E.: Instrumental mechanoreceptoric palpation in gastrointestinal surgery. Minim. Invasive Surg. 2017, 6481856 (2017). https://doi.org/10.1155/2017/6481856
Song, S., Li, Z., Yu, H., Ren, H.: Electromagnetic positioning for tip tracking and shape sensing of flexible robots. IEEE Sens. J. 15(8), 4565–4575 (2015)
Thananjeyan, B., Garg, A., Krishnan, S., Chen, C., Miller, L., Goldberg, K.: Multilateral surgical pattern cutting in 2d orthotropic gauze with deep reinforcement learning policies for tensioning. In: Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 2371–2378. IEEE (2017)
Xu, W., Chen, J., Lau, H.Y., Ren, H.: Automate surgical tasks for a flexible serpentine manipulator via learning actuation space trajectory from demonstration. In: Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 4406–4413. IEEE (2016)
Xu, W., Chen, J., Lau, H.Y., Ren, H.: Data-driven methods towards learning the highly nonlinear inverse kinematics of tendon-driven surgical manipulators. Int. J. Med. Robot. Comput. Assist. Surg. 13(3), e1774 (2017)
Yip, M.C., Camarillo, D.B.: Model-less feedback control of continuum manipulators in constrained environments. IEEE Trans. Robot. 30(4), 880–889 (2014)
Yip, M.C., Camarillo, D.B.: Model-less hybrid position/force control: A minimalist approach for continuum manipulators in unknown, constrained environments. IEEE Robot. Autom. Lett. 1(2), 844–851 (2016)
You, X., Zhang, Y., Chen, X., Liu, X., Wang, Z., Jiang, H., Chen, X.: Model-free control for soft manipulators based on reinforcement learning. In: Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2909–2915. IEEE (2017)
Zhao, J., Zheng, X., Zheng, M., Shih, A.J., Xu, K.: An endoscopic continuum testbed for finalizing system characteristics of a surgical robot for notes procedures. In: Proceedings of the 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 63–70. IEEE (2013)
Acknowledgements
This work is supported by the Singapore Academic Research Fund under Grant R-397-000-297-114. The authors would like to thank Feifei Chen for fabricating the soft finger.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Xu, W., Pan, A. & Ren, H. Transferring optimal contact skills to flexible manipulators by reinforcement learning. Int J Intell Robot Appl 3, 326–337 (2019). https://doi.org/10.1007/s41315-019-00101-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41315-019-00101-7