Abstract
The recognition of smart home devices within WiFi environments stands as a pivotal focus within contemporary Internet of Things (IoT) security, especially in the context of Futuristic Smart Networks-based IoT. The inherent encryption feature of the 802.11 protocol in WiFi settings renders conventional identification methods, reliant on plaintext traffic patterns, ineffective for IoT devices. Through an examination of the 802.11 protocol, distinctive traits within data frames of various smart home devices are revealed. Building on these insights, this research selects attributes like frame length, frame arrival time, duration, and frame sequence number as salient traffic characteristics. Leveraging an enhanced decision tree CART algorithm, the study achieves robust device identification for smart home devices operating within WiFi environments. Experimental outcomes affirm the method's efficacy by accurately discerning device models, achieving an impressive identification accuracy of 91.3%.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Xia, Z., Chong, S.: WiFi-based indoor passive fall detection for the medical Internet of Things. Comput. Electr. Eng. 109, 108763 (2023). https://doi.org/10.1016/j.compeleceng.2023.108763
Omran, M.A., Hamza, B.J., Saad, W.K.: The design and fulfillment of a Smart Home (SH) material powered by the IoT using the Blynk app. Mater. Today Proc. 60, 1199–1212 (2022). https://doi.org/10.1016/j.matpr.2021.08.038
Castelo Gómez, J.M., Carrillo-Mondéjar, J., MartínezMartínez, J.L., Navarro García, J.: Forensic analysis of the Xiaomi Mi Smart Sensor Set. Forensic Sci. Int. Digit. Investig. 42–43, 301451 (2022). https://doi.org/10.1016/j.fsidi.2022.301451
Roy Chowdhury, R., Aneja, S., Aneja, N., Abas, P.E.: Packet-level and IEEE 802.11 MAC frame-level network traffic traces data of the D-Link IoT devices. Data Brief 37, 107208 (2021). https://doi.org/10.1016/j.dib.2021.107208
Han, S.: Congestion-aware WiFi offload algorithm for 5G heterogeneous wireless networks. Comput. Commun. 164, 69–76 (2020). https://doi.org/10.1016/j.comcom.2020.10.006
Javed, A.R., Shahzad, F., Urrehman, S., Zikria, Y.B., Razzak, I., Jalil, Z., Xu, G.: Future smart cities: requirements, emerging technologies, applications, challenges, and future aspects. Cities 129, 103794 (2022). https://doi.org/10.1016/j.cities.2022.103794
S, M., M, R.: MUD enabled deep learning framework for anomaly detection in IoT-integrated smart building. e-Prime Adv. Electr. Eng. Electron. Energy 5, 100186 (2023). https://doi.org/10.1016/j.prime.2023.100186
Yao, Y., Zhang, H., Xia, P., Liu, C., Geng, F., Bai, Z., Du, L., Chen, X., Wang, P., Han, B., Yang, T., Fang, Z.: Signature: semi-supervised human identification system based on millimeter wave radar. Eng. Appl. Artif. Intell.Artif. Intell. 126, 106939 (2023). https://doi.org/10.1016/j.engappai.2023.106939
Alhamed, K.M., Iwendi, C., Dutta, A.K., Almutairi, B., Alsaghier, H., Almotairi, S.: Building construction based on video surveillance and deep reinforcement learning using a smart grid power system. Comput. Electr. Eng. 103, 108273 (2022). https://doi.org/10.1016/j.compeleceng.2022.108273
Gaber, T., El-Ghamry, A., Hassanien, A.E.: Injection attack detection using machine learning for smart IoT applications. Phys. Commun. 52, 101685 (2022). https://doi.org/10.1016/j.phycom.2022.101685
Sharma, A., Gupta, A.K., Shabaz, M.: Categorizing threat types and cyber-assaults over Internet of Things-equipped gadgets. Paladyn J. Behav. Robotics 13(1), 84–98 (2022). https://doi.org/10.1515/pjbr-2022-0100
Prentow, T.S., Ruiz-Ruiz, A.J., Blunck, H., Stisen, A., Kjærgaard, M.B.: Spatio-temporal facility utilization analysis from exhaustive WiFi monitoring. Pervasive Mob. Comput.Comput. 16, 305–316 (2015). https://doi.org/10.1016/j.pmcj.2014.12.006
Abdulsalam, K.A., Adebisi, J., Emezirinwune, M., Babatunde, O.: An overview and multicriteria analysis of communication technologies for smart grid applications. e-Prime Adv. Electr. Eng. Electron. Energy 3, 100121 (2023). https://doi.org/10.1016/j.prime.2023.100121
Chowdhury, R.R., Abas, P.E.: A survey on device fingerprinting approach for resource-constraint IoT devices: comparative study and research challenges. Internet of Things 20, 100632 (2022). https://doi.org/10.1016/j.iot.2022.100632
Sun, X., Yuan, L., Wang, X.: Intelligent monitoring of home movement based on fuzzy control theory. Microprocess. Microsyst. 82, 103943 (2021). https://doi.org/10.1016/j.micpro.2021.103943
Kaur, B., Dadkhah, S., Shoeleh, F., Neto, E.C.P., Xiong, P., Iqbal, S., Lamontagne, P., Ray, S., Ghorbani, A.A.: Internet of Things (IoT) security dataset evolution: challenges and future directions. Internet of Things 22, 100780 (2023). https://doi.org/10.1016/j.iot.2023.100780
Ma, C., Man Lee, C.K., Du, J., Li, Q., Gravina, R.: Work engagement recognition in smart office. Proc. Comput. Sci. 200, 451–460 (2022). https://doi.org/10.1016/j.procs.2022.01.243
Huseien, G.F., Shah, K.W.: A review of 5G technology for smart energy management and smart buildings in Singapore. Energy AI 7, 100116 (2022). https://doi.org/10.1016/j.egyai.2021.100116
Khalil, N., Benhaddou, D., Gnawali, O., Subhlok, J.: Nonintrusive ultrasonic-based occupant identification for energy-efficient smart building applications. Appl. Energy 220, 814–828 (2018). https://doi.org/10.1016/j.apenergy.2018.03.018
Malkawi, A., Ervin, S., Han, X., Chen, E.X., Lim, S., Ampanavos, S., Howard, P.: Design and applications of an IoT architecture for data-driven smart building operations and experimentation. Energy Build. 295, 113291 (2023). https://doi.org/10.1016/j.enbuild.2023.113291
Gowda, V.D., Sharma, A., Rao, B.K., Shankar, R., Sarma, P., Chaturvedi, A., Hussain, N.: Industrial quality healthcare services using the Internet of Things and fog computing approach. Meas. Sens. 24, 100517 (2022). https://doi.org/10.1016/j.measen.2022.100517
Nauman, A., Jamshed, M.A., Ahmad, Y., Saad, M., Bilal, M., Shanmuganathan, V., Kim, S.W.: Injecting cognitive intelligence into beyond-5G networks: a MAC layer perspective. Comput. Electr. Eng. 108, 108717 (2023). https://doi.org/10.1016/j.compeleceng.2023.108717
Wirtz, B.W., Weyerer, J.C., Schichtel, F.T.: An integrative public IoT framework for smart government. Gov. Inf. Q. 36(2), 333–345 (2019). https://doi.org/10.1016/j.giq.2018.07.001
Lee, J.H., Hancock, M.G., Hu, M.-C.: Towards an effective framework for building smart cities: lessons from Seoul and San Francisco. Technol. Forecast. Soc. Chang. 89, 80–99 (2014). https://doi.org/10.1016/j.techfore.2013.08.033
Bai, Y., Lu, L., Cheng, J., Liu, J., Chen, Y., Yu, J.: Acoustic-based sensing and applications: a survey. Comput. Netw. 181, 107447 (2020). https://doi.org/10.1016/j.comnet.2020.107447
Li, Q., Gravina, R., Li, Y., Alsamhi, S.H., Sun, F., Fortino, G.: Multi-user activity recognition: challenges and opportunities. Inf. Fusion 63, 121–135 (2020). https://doi.org/10.1016/j.inffus.2020.06.004
Khan, R.H., Khan, J.Y.: A comprehensive review of the application characteristics and traffic requirements of a smart grid communications network. Comput. Netw. 57(3), 825–845 (2013). https://doi.org/10.1016/j.comnet.2012.11.002
Mumtaz, S., Lundqvist, H., Huq, K.M.S., Rodriguez, J., Radwan, A.: Smart Direct-LTE communication: an energy saving perspective. Ad Hoc Netw. 13, 296–311 (2014). https://doi.org/10.1016/j.adhoc.2013.08.008
Rahhal, M., Adda, M., Atieh, M., Ibrahim, H.: Health of humans and machines in a common perspective. Proc. Comput. Sci. 177, 415–422 (2020). https://doi.org/10.1016/j.procs.2020.10.055
Woźniak, M., Zielonka, A., Sikora, A.: Driving support by type-2 fuzzy logic control model. Expert Syst. Appl. 207, 117798 (2022). https://doi.org/10.1016/j.eswa.2022.117798
Mohanty, R., Pani, S.K.: Livestock health monitoring using a smart IoT-enabled neural network recognition system. In: Cognitive Big Data Intelligence with a Metaheuristic Approach, pp. 305–321. Elsevier (2022). https://doi.org/10.1016/b978-0-323-85117-6.00007-8
Raja, G.B., Chakraborty, C.: Internet of things based effective wearable healthcare monitoring system for remote areas. In: Implementation of Smart Healthcare Systems using AI, IoT, and Blockchain, pp. 193–218. Elsevier (2023). https://doi.org/10.1016/b978-0-323-91916-6.00004-7
Raut, A., Shivhare, A., Chaurasiya, V.K., Kumar, M.: AEDS-IoT: adaptive clustering-based event detection scheme for IoT data streams. Internet of Things 22, 100704 (2023). https://doi.org/10.1016/j.iot.2023.100704
Sharma, J., Mehra, P.S.: Secure communication in IOT-based UAV networks: a systematic survey. Internet of Things 23, 100883 (2023). https://doi.org/10.1016/j.iot.2023.100883
Zhao, Z., Shen, L., Yang, C., Wu, W., Zhang, M., Huang, G.Q.: IoT and digital twin-enabled smart tracking for safety management. Comput. Oper. Res. 128, 105183 (2021). https://doi.org/10.1016/j.cor.2020.105183
Hou, X., Bergmann, J.H.M.: HINNet: Inertial navigation with head-mounted sensors using a neural network. Eng. Appl. Artif. Intell.Artif. Intell. 123, 106066 (2023). https://doi.org/10.1016/j.engappai.2023.106066
Adarsh, A., Kumar, B.: Wireless medical sensor networks for smart e-healthcare. In: Intelligent Data Security Solutions for e-Health Applications, pp. 275–292. Elsevier (2020). https://doi.org/10.1016/b978-0-12-819511-6.00015-7
Nethercote, M.: Platform landlords: renters, personal data, and new digital footholds of urban control. Digit. Geogr. Soc. 5, 100060 (2023). https://doi.org/10.1016/j.diggeo.2023.100060
Lee, C.-H., Wang, C., Fan, X., Li, F., Chen, C.-H.: Artificial intelligence-enabled digital transformation in the elderly healthcare field: a scoping review. Adv. Eng. Inform. 55, 101874 (2023). https://doi.org/10.1016/j.aei.2023.101874
Sampaio, H.V., Westphall, C.B., Koch, F., Do Nascimento Boing, R., Santa Cruz, R.N.: Autonomic energy management with Fog Computing. Comput. Electr. Eng. 93, 107246 (2021). https://doi.org/10.1016/j.compeleceng.2021.107246
Rani, P.J., Jason, B., Praveen, K.U., Praveen, K.U., Santhosh, K.: Voice controlled home automation system using natural language processing (NLP) and Internet of things (IoT). In: Proceedings of the Third International Conference on Science Technology Engineering and Management. IEEE, Chennai, India (2017)
Jaihar, J., Lingayat, N., Vijaybhai, P.S., Venkatesh, G., Upla, K.P.: Smart home automation using machine learning algorithms. In: Proceedings of the International Conference for Emerging Technology, IEEE, Belgaum, India (2020)
Khan, S.A., Farhad, A., Ibrar, M., Arif, M.: Real time algorithm for the smart home automation based on the Internet of things. Int. J. Comput. Sci. Inf. Secur. 14(7), 94–99 (2016)
Popa, D., Pop, F., Serbanescu, C., Castiglione, A.: Deep learning model for home automation and energy reduction in a smart home environment platform. Neural Comput. Appl. 1–21 (2018)
Machorro-Cano, I., Alor-Hernandez, G., Paredes-Valverde, M.A., Rodriguez-Mazahua, L., Sanchez-Cervantes, J.L., Olmedo-Aguirre, J.O.: HEMS-IoT: a big data and machine learning-based smart home system for energy saving. Energies 13(1097), 1–24 (2020)
Singh, H., Pallagani, V., Khandelwal, V., Venkanna, U.: IoT-based smart home automation system using sensor node. In: Proceedings of the Fourth International Conference on Recent Advances in Information Technology. IEEE, Dhanbad, India (2018)
Funding
This is self-funded research.
Author information
Authors and Affiliations
Contributions
All authors have equally contributed to this research.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Conflict of interest
The authors do not have any conflict of interest.
Ethical approval
All ethical issues including human or animal participation have been done.
Consent participation
There is no such participation.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Fakhruldeen, H.F., Saadh, M.J., Khan, S. et al. Enhancing smart home device identification in WiFi environments for futuristic smart networks-based IoT. Int J Data Sci Anal (2024). https://doi.org/10.1007/s41060-023-00489-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s41060-023-00489-3