Abstract
Crime undermines human and economic growth across all demographics. This is particularly true for developing countries. Thus, the reduction and prevention of crime has been a major focus for governments in Caribbean countries including Trinidad and Tobago (T &T). Big data analytics (BDA) has been extremely popular in exploring, identifying and predicting crime patterns. In this paper we use BDA techniques, such as exploratory data analysis (EDA), geocoding for hotspot mapping (GHM), kernel density estimation (KDE), and Twitter police advisement word-cloud (T-PAW) to analyse historical crime data and predict crime. We show each technique is individually robust providing valuable results. Our analysis showed breaking offences had the highest Prediction Accuracy Index (PAI) of 6.99 in 2020. We further demonstrated that crime data and Twitter data are both clustered in similar geographical areas confirming Twitter data is relevant in T &T crime analysis. Our ablation study shows adding Twitter data to the KDE technique resulted in a 9% improvement in accuracy. Authorities in developing countries may now consider using these techniques in reducing crime.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Feng, M., Zheng, J., Han, Y., Ren, J., Liu, Q.: In: International conference on brain inspired cognitive systems (Springer, 2018), pp. 605–614
Feng, M., Zheng, J., Ren, J., Hussain, A., Li, X., Xi, Y., Liu, Q.: Big data analytics and mining for effective visualization and trends forecasting of crime data. IEEE Access 7, 106111 (2019)
Celestini, A., Me, G., Mignone, M.: In: International conference on global security, safety, and sustainability (Springer, 2017), pp. 218–229
Smith, G.J., Bennett Moses, L., Chan, J.: The challenges of doing criminology in the big data era: towards a digital and data-driven approach. Br. J. Criminol. 57(2), 259 (2017)
Pfeffer, K., Verrest, H., Poorthuis, A.: Big data for better urban life?-an Exploratory study of critical urban issues in two Caribbean cities: Paramaribo (Suriname) and Port of Spain (Trinidad and Tobago). Eur. J. Dev. Res. 27(4), 505 (2015)
Seele, P.: Predictive sustainability control: a review assessing the potential to transfer big data driven ‘predictive policing’ to corporate sustainability management. J. Clean. Prod. 153, 673 (2017)
Abdulkadri, A., Evans, A., Ash, T.: (2016)
Bappee, F.K., Junior, A.S., Matwin, S.: In: Canadian Conference on Artificial Intelligence (Springer, 2018), pp. 367–373
Wang, X., Brown, D.E., Gerber, M.S.: In: 2012 IEEE international conference on intelligence and security informatics (IEEE, 2012), pp. 36–41
Gerber, M.S.: Predicting crime using Twitter and Kernel density estimation. Decis. Support Syst. 61, 115 (2014)
Bello-Orgaz, G., Jung, J.J., Camacho, D.: Social big data: recent achievements and new challenges. Inf. Fusion 28, 45 (2016)
Kalinic, M., Krisp, J.M.: In: Proceeding of the conference on geo-information science (2018)
Wang, Z., Zhang, H.: Understanding the spatial distribution of crime in hot crime areas. Singap. J. Trop. Geogr. 40(3), 496 (2019)
Williams, M.L., Burnap, P., Sloan, L.: Crime sensing with big data: the affordances and limitations of using open-source communications to estimate crime patterns. Br. J. Criminol. 57(2), 320 (2017)
Malleson, N., Andresen, M.A.: Intra-week spatial-temporal patterns of crime. Crime Sci. 4(1), 1 (2015)
Weidemann, C., Swift, J.: Social media location intelligence: the next privacy battle-an ArcGIS add-in and analysis of geospatial data collected from Twitter. com. Int. J. Geoinf. 9(2) (2013)
Ihrig, C.J.: XRDS: crossroads. ACM Mag. Stud. 19(1), 72 (2012)
McKinney, W., et al.: pandas: a foundational Python library for data analysis and statistics. Python High Perform. Sci. Comput. 14(9), 1 (2011)
Seabold, S., Perktold, J.: In: Proceedings of the 9th Python in science conference, vol. 57 (Austin, TX, 2010), vol. 57, p. 61
Scott, D.W.: Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley, London (2015)
Chainey, S.P.: Examining the influence of cell size and bandwidth size on Kernel density estimation crime hotspot maps for predicting spatial patterns of crime. Bull. Geogr. Soc. Liege 60, 7 (2013)
Johansson, E., Gåhlin, C., Borg, A.: In: 2015 European intelligence and security informatics conference (IEEE, 2015), pp. 69–74
Chainey, S., Tompson, L., Uhlig, S.: The utility of hotspot mapping for predicting spatial patterns of crime. Secur. J. 21(1), 4 (2008)
Chowdhury, G.G.: Ann. Rev. Inf. Sci. Technol. 37(1), 51 (2003)
Jaworski, M., Ziadé, T.: Expert Python programming: become a master in Python by learning coding best practices and advanced programming concepts in Python 3.7 (Packt Publishing Ltd, 2019)
Lobur, M., Romanyuk, A., Romanyshyn, M.: In: 2011 11th international conference the experience of designing and application of CAD systems in microelectronics (CADSM) (IEEE, 2011), pp. 426–428
Lohmann, S., Heimerl, F., Bopp, F., Burch, M., Ertl, T.: In: 2015 19th international conference on information visualisation (IEEE, 2015), pp. 114–120
Munksgaard, R., Demant, J.: Mixing politics and crime-the prevalence and decline of political discourse on the cryptomarket. Int. J. Drug Policy 35, 77 (2016)
Powell, A., Overington, C., Hamilton, G.: Crime, media. Culture 14(3), 409 (2018)
Tosi, S.: Matplotlib for Python Developers. Packt Publishing Ltd, Birmingham (2009)
Sandagiri, S., Kumara, B., Kuhaneswaran, B.: In: 2020 IEEE 15th international conference on industrial and information systems (ICIIS) (IEEE, 2020), pp. 506–510
Noor, S., Guo, Y., Shah, S.H.H., Halepoto, H.: In: International conference on knowledge science, engineering and management (Springer, 2021), pp. 610–618
Stec, A., Klabjan, D.: arXiv preprint arXiv:1806.01486 (2018)
Shah, D., Wang, J., He, Q.P.: Feature engineering in big data analytics for IoT-enabled smart manufacturing-comparison between deep learning and statistical learning. Comput. Chem. Eng. 141, 106970 (2020)
Chawla, S., Garimella, K., Gionis, A., Tsang, D.: Backbone discovery in traffic networks. Int. J. Data Sci. Anal. 1(3), 215 (2016)
Salman, S., Streiffer, C., Chen, H., Benson, T., Kadav, A.: In: Proceedings of the 2018 workshop on network meets AI & ML (2018), pp. 8–14
Amin, F., Choi, G.S.: Hotspots analysis using cyber-physical-social system for a smart city. IEEE Access 8, 122197 (2020)
Wu, X., Huang, Z., Peng, X., Chen, Y., Liu, Y.: Building a spatially-embedded network of tourism hotspots from geotagged social media data. IEEE Access 6, 21945 (2018)
Ramsahai, E., Walkins, K., Tripathi, V., John, M.: The use of gene interaction networks to improve the identification of cancer driver genes. PeerJ 5, e2568 (2017)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ramsahai, E., Dookeram, N., Ramsook, D. et al. Crime prediction in Trinidad and Tobago using big data analytics. Int J Data Sci Anal 15, 421–432 (2023). https://doi.org/10.1007/s41060-023-00386-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41060-023-00386-9