[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Crime prediction in Trinidad and Tobago using big data analytics

Predictive policing in developing countries

  • Applications
  • Published:
International Journal of Data Science and Analytics Aims and scope Submit manuscript

Abstract

Crime undermines human and economic growth across all demographics. This is particularly true for developing countries. Thus, the reduction and prevention of crime has been a major focus for governments in Caribbean countries including Trinidad and Tobago (T &T). Big data analytics (BDA) has been extremely popular in exploring, identifying and predicting crime patterns. In this paper we use BDA techniques, such as exploratory data analysis (EDA), geocoding for hotspot mapping (GHM), kernel density estimation (KDE), and Twitter police advisement word-cloud (T-PAW) to analyse historical crime data and predict crime. We show each technique is individually robust providing valuable results. Our analysis showed breaking offences had the highest Prediction Accuracy Index (PAI) of 6.99 in 2020. We further demonstrated that crime data and Twitter data are both clustered in similar geographical areas confirming Twitter data is relevant in T &T crime analysis. Our ablation study shows adding Twitter data to the KDE technique resulted in a 9% improvement in accuracy. Authorities in developing countries may now consider using these techniques in reducing crime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Feng, M., Zheng, J., Han, Y., Ren, J., Liu, Q.: In: International conference on brain inspired cognitive systems (Springer, 2018), pp. 605–614

  2. Feng, M., Zheng, J., Ren, J., Hussain, A., Li, X., Xi, Y., Liu, Q.: Big data analytics and mining for effective visualization and trends forecasting of crime data. IEEE Access 7, 106111 (2019)

    Article  Google Scholar 

  3. Celestini, A., Me, G., Mignone, M.: In: International conference on global security, safety, and sustainability (Springer, 2017), pp. 218–229

  4. Smith, G.J., Bennett Moses, L., Chan, J.: The challenges of doing criminology in the big data era: towards a digital and data-driven approach. Br. J. Criminol. 57(2), 259 (2017)

    Article  Google Scholar 

  5. Pfeffer, K., Verrest, H., Poorthuis, A.: Big data for better urban life?-an Exploratory study of critical urban issues in two Caribbean cities: Paramaribo (Suriname) and Port of Spain (Trinidad and Tobago). Eur. J. Dev. Res. 27(4), 505 (2015)

    Article  Google Scholar 

  6. Seele, P.: Predictive sustainability control: a review assessing the potential to transfer big data driven ‘predictive policing’ to corporate sustainability management. J. Clean. Prod. 153, 673 (2017)

    Article  Google Scholar 

  7. Abdulkadri, A., Evans, A., Ash, T.: (2016)

  8. Bappee, F.K., Junior, A.S., Matwin, S.: In: Canadian Conference on Artificial Intelligence (Springer, 2018), pp. 367–373

  9. Wang, X., Brown, D.E., Gerber, M.S.: In: 2012 IEEE international conference on intelligence and security informatics (IEEE, 2012), pp. 36–41

  10. Gerber, M.S.: Predicting crime using Twitter and Kernel density estimation. Decis. Support Syst. 61, 115 (2014)

    Article  Google Scholar 

  11. Bello-Orgaz, G., Jung, J.J., Camacho, D.: Social big data: recent achievements and new challenges. Inf. Fusion 28, 45 (2016)

    Article  Google Scholar 

  12. Kalinic, M., Krisp, J.M.: In: Proceeding of the conference on geo-information science (2018)

  13. Wang, Z., Zhang, H.: Understanding the spatial distribution of crime in hot crime areas. Singap. J. Trop. Geogr. 40(3), 496 (2019)

    Article  Google Scholar 

  14. Williams, M.L., Burnap, P., Sloan, L.: Crime sensing with big data: the affordances and limitations of using open-source communications to estimate crime patterns. Br. J. Criminol. 57(2), 320 (2017)

    Google Scholar 

  15. Malleson, N., Andresen, M.A.: Intra-week spatial-temporal patterns of crime. Crime Sci. 4(1), 1 (2015)

    Google Scholar 

  16. Weidemann, C., Swift, J.: Social media location intelligence: the next privacy battle-an ArcGIS add-in and analysis of geospatial data collected from Twitter. com. Int. J. Geoinf. 9(2) (2013)

  17. Ihrig, C.J.: XRDS: crossroads. ACM Mag. Stud. 19(1), 72 (2012)

    Google Scholar 

  18. McKinney, W., et al.: pandas: a foundational Python library for data analysis and statistics. Python High Perform. Sci. Comput. 14(9), 1 (2011)

    Google Scholar 

  19. Seabold, S., Perktold, J.: In: Proceedings of the 9th Python in science conference, vol. 57 (Austin, TX, 2010), vol. 57, p. 61

  20. Scott, D.W.: Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley, London (2015)

    MATH  Google Scholar 

  21. Chainey, S.P.: Examining the influence of cell size and bandwidth size on Kernel density estimation crime hotspot maps for predicting spatial patterns of crime. Bull. Geogr. Soc. Liege 60, 7 (2013)

    Google Scholar 

  22. Johansson, E., Gåhlin, C., Borg, A.: In: 2015 European intelligence and security informatics conference (IEEE, 2015), pp. 69–74

  23. Chainey, S., Tompson, L., Uhlig, S.: The utility of hotspot mapping for predicting spatial patterns of crime. Secur. J. 21(1), 4 (2008)

    Article  Google Scholar 

  24. Chowdhury, G.G.: Ann. Rev. Inf. Sci. Technol. 37(1), 51 (2003)

  25. Jaworski, M., Ziadé, T.: Expert Python programming: become a master in Python by learning coding best practices and advanced programming concepts in Python 3.7 (Packt Publishing Ltd, 2019)

  26. Lobur, M., Romanyuk, A., Romanyshyn, M.: In: 2011 11th international conference the experience of designing and application of CAD systems in microelectronics (CADSM) (IEEE, 2011), pp. 426–428

  27. Lohmann, S., Heimerl, F., Bopp, F., Burch, M., Ertl, T.: In: 2015 19th international conference on information visualisation (IEEE, 2015), pp. 114–120

  28. Munksgaard, R., Demant, J.: Mixing politics and crime-the prevalence and decline of political discourse on the cryptomarket. Int. J. Drug Policy 35, 77 (2016)

    Article  Google Scholar 

  29. Powell, A., Overington, C., Hamilton, G.: Crime, media. Culture 14(3), 409 (2018)

    Google Scholar 

  30. Tosi, S.: Matplotlib for Python Developers. Packt Publishing Ltd, Birmingham (2009)

    Google Scholar 

  31. Sandagiri, S., Kumara, B., Kuhaneswaran, B.: In: 2020 IEEE 15th international conference on industrial and information systems (ICIIS) (IEEE, 2020), pp. 506–510

  32. Noor, S., Guo, Y., Shah, S.H.H., Halepoto, H.: In: International conference on knowledge science, engineering and management (Springer, 2021), pp. 610–618

  33. Stec, A., Klabjan, D.: arXiv preprint arXiv:1806.01486 (2018)

  34. Shah, D., Wang, J., He, Q.P.: Feature engineering in big data analytics for IoT-enabled smart manufacturing-comparison between deep learning and statistical learning. Comput. Chem. Eng. 141, 106970 (2020)

    Article  Google Scholar 

  35. Chawla, S., Garimella, K., Gionis, A., Tsang, D.: Backbone discovery in traffic networks. Int. J. Data Sci. Anal. 1(3), 215 (2016)

    Article  Google Scholar 

  36. Salman, S., Streiffer, C., Chen, H., Benson, T., Kadav, A.: In: Proceedings of the 2018 workshop on network meets AI & ML (2018), pp. 8–14

  37. Amin, F., Choi, G.S.: Hotspots analysis using cyber-physical-social system for a smart city. IEEE Access 8, 122197 (2020)

    Article  Google Scholar 

  38. Wu, X., Huang, Z., Peng, X., Chen, Y., Liu, Y.: Building a spatially-embedded network of tourism hotspots from geotagged social media data. IEEE Access 6, 21945 (2018)

    Article  Google Scholar 

  39. Ramsahai, E., Walkins, K., Tripathi, V., John, M.: The use of gene interaction networks to improve the identification of cancer driver genes. PeerJ 5, e2568 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koffka Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramsahai, E., Dookeram, N., Ramsook, D. et al. Crime prediction in Trinidad and Tobago using big data analytics. Int J Data Sci Anal 15, 421–432 (2023). https://doi.org/10.1007/s41060-023-00386-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41060-023-00386-9

Keywords

Navigation