[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Physical Stimulations for Bone and Cartilage Regeneration

  • Review Paper
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

A wide range of techniques and methods are actively invented by clinicians and scientists who are dedicated to the field of musculoskeletal tissue regeneration. Biological, chemical, and physiological factors, which play key roles in musculoskeletal tissue development, have been extensively explored. However, physical stimulation is increasingly showing extreme importance in the processes of osteogenic and chondrogenic differentiation, proliferation and maturation through defined dose parameters including mode, frequency, magnitude, and duration of stimuli. Studies have shown manipulation of physical microenvironment is an indispensable strategy for the repair and regeneration of bone and cartilage, and biophysical cues could profoundly promote their regeneration. In this article, we review recent literature on utilization of physical stimulation, such as mechanical forces (cyclic strain, fluid shear stress, etc.), electrical and magnetic fields, ultrasound, shock waves, and substrate stimuli, to promote the repair and regeneration of bone and cartilage tissue. Emphasis is placed on the mechanism of cellular response and the potential clinical usage of these stimulations for bone and cartilage regeneration.

Lay Summary

Bone and cartilage regenerative engineering aims to create stable, bioactive, and native tissue-like scaffolds which can repair bone and cartilage damages. These scaffolds are often combined with chondrogenic/osteogenic cells or stem cells to create replacement tissue grafts with enhanced regenerative capability. In this approach, physical stimulations such as ultrasound, mechanical force, electrical charge, and magnetic field have significant impacts on cell fate and behavior through regulating various intracellular signaling pathways. The review provides a comprehensive understanding and broad overview of literature on effects of different physical stimulations on cellular behaviors and signaling pathways, which have been reported to induce growth of bone and cartilage. The knowledge lay a strong foundation for the development of future “smart” tissue grafts that can effectively repair bone and cartilage under physical stimulations. Other future works will focus on combining different physical stimulations and fine-tuning parameters of such stimulations to obtain optimal cartilage and bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GBR:

guided bone regeneration

ACI:

autologous chondrocyte implantation

hMSCs:

human mesenchymal stem cells

ECM:

extracellular matrix

ASCs:

mouse adipose-derived mesenchymal stem cells

PFF:

pulsating fluid flow

OPN:

osteopontin

SSAT:

spermidine/spermine-N(1)-acetyltransferase

FAK:

focal adhesion kinase

RhoA:

Ras homolog gene family member A

VSCC:

voltage-sensitive calcium channels

ES:

electrical stimulation

EF:

electric field

DC:

direct current

CCEF:

capacitive coupling electric field

EMF:

electromagnetic field

AC:

alternating current

PI3K:

phosphatidylinositol-3-kinase

mTOR:

mammalian target of rapamycin

TGF-β:

transforming growth factor-β

A2AR:

adenosine A2A receptors

GAGs:

glycosaminoglycans

PEMFs:

pulsed electromagnetic fields

ELF-PEMF:

extremely low-frequency pulsed electromagnetic field

ROS:

reactive oxygen species

Col I:

collagen type I

GSK-3β:

glycogen synthase kinase-3 beta

TRK:

tyrosine kinase receptor

TCF/LEF:

T cell factor/lymphoid enhancer factor

PI3K:

phosphatidylinositide 3-kinases

TGF-β:

transforming growth factor beta

BMP:

bone morphogenetic proteins

AKT:

protein kinase B

mTOR:

mechanistic target of rapamycin

NF-κB:

nuclear factor kappa-light-chain-enhancer of activated B cells

PGE2:

prostaglandin E2

AC:

adenylyl cyclase

cAMP:

cyclic adenosine monophosphate

PKA:

protein kinase A

CREB:

cAMP response element-binding protein

PKC:

protein kinase C

MAPK:

mitogen-activated protein kinase

ERK:

extracellular signal-regulated kinases

FAK:

focal adhesion kinase

GPCR:

G protein-coupled receptor

OCN:

osteocalcin

Osx:

osterix

US:

ultrasound

LIPUS:

low-intensity pulsed ultrasound

BSP:

bone sialoprotein

MCP:

monocyte-chemoattractant protein

MIP:

macrophage-inflammatory protein

RANKL:

receptor activator of nuclear factor kappa-Β ligand

ATI:

angiotensin II type I receptor

NO:

nitric oxide

PGE2:

prostaglandin E2

VEGF:

vascular endothelial growth factor

GPCRs:

G protein-coupled receptors

BMSCs:

bone marrow-derived mesenchymal stem cells

ESWT:

extracorporeal shock wave therapy

CBFA1:

core-binding factor alpha1

ROCK:

RhoA and Rho-associated protein kinase

PG:

proteoglycan

ACAN:

aggrecan

PRG4:

proteoglycan 4

SZP:

superficial zone protein

PCM:

pericellular matrix

TRPV4:

transient receptor potential vanilloid 4

CC:

capacitive coupling

EPAC:

exchange proteins activated directly by cyclic AMP

TNF-α:

tumor necrosis factor-α

NF-AT:

nuclear factor of activated T cells

SMFs:

static magnetic fields

WOMAC:

Western Ontario and McMaster University Osteoarthritis Index

LLLT:

low-level laser therapy

References

  1. Laurencin CT, Khan Y. Regenerative engineering. Sci Transl Med. 2012;4(160):160ed9. https://doi.org/10.1126/scitranslmed.3004467.

    Article  Google Scholar 

  2. Lo KW, Jiang T, Gagnon KA, Nelson C, Laurencin CT. Small-molecule based musculoskeletal regenerative engineering. Trends Biotechnol. 2014;32(2):74–81. https://doi.org/10.1016/j.tibtech.2013.12.002.

    Article  CAS  Google Scholar 

  3. Ueyama Y, Ishikawa K, Mano T, Koyama T, Nagatsuka H, Suzuki K, et al. Usefulness as guided bone regeneration membrane of the alginate membrane. Biomaterials. 2002;23(9):2027–33.

    Article  CAS  Google Scholar 

  4. Davey AK, Maher PJ. Surgical adhesions: a timely update, a great challenge for the future. J Minim Invasive Gynecol. 2007;14(1):15–22. https://doi.org/10.1016/j.jmig.2006.07.013.

    Article  Google Scholar 

  5. Kikuchi M, Koyama Y, Yamada T, Imamura Y, Okada T, Shirahama N, et al. Development of guided bone regeneration membrane composed of beta-tricalcium phosphate and poly (L-lactide-co-glycolide-co-epsilon-caprolactone) composites. Biomaterials. 2004;25(28):5979–86. https://doi.org/10.1016/j.biomaterials.2004.02.001.

    Article  CAS  Google Scholar 

  6. Cournil-Henrionnet C, Huselstein C, Wang Y, Galois L, Mainard D, Decot V, et al. Phenotypic analysis of cell surface markers and gene expression of human mesenchymal stem cells and chondrocytes during monolayer expansion. Biorheology. 2008;45(3–4):513–26.

    Google Scholar 

  7. Hubka KM, Dahlin RL, Meretoja VV, Kasper FK, Mikos AG. Enhancing chondrogenic phenotype for cartilage tissue engineering: monoculture and coculture of articular chondrocytes and mesenchymal stem cells. Tissue Eng B Rev. 2014;20(6):641–54. https://doi.org/10.1089/ten.TEB.2014.0034.

    Article  Google Scholar 

  8. Peterson L, Minas T, Brittberg M, Nilsson A, Sjogren-Jansson E, Lindahl A. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res. 2000;374:212–34.

    Article  Google Scholar 

  9. Roberts S, McCall IW, Darby AJ, Menage J, Evans H, Harrison PE, et al. Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology. Arthritis Res Ther. 2003;5(1):R60–73.

    Article  Google Scholar 

  10. Freyria AM, Mallein-Gerin F. Chondrocytes or adult stem cells for cartilage repair: the indisputable role of growth factors. Injury. 2012;43(3):259–65. https://doi.org/10.1016/j.injury.2011.05.035.

    Article  Google Scholar 

  11. Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science. 2012;338(6109):917–21. https://doi.org/10.1126/science.1222454.

    Article  CAS  Google Scholar 

  12. Puetzer JL, Petitte JN, Loboa EG. Comparative review of growth factors for induction of three-dimensional in vitro chondrogenesis in human mesenchymal stem cells isolated from bone marrow and adipose tissue. Tissue Eng B Rev. 2010;16(4):435–44. https://doi.org/10.1089/ten.TEB.2009.0705.

    Article  CAS  Google Scholar 

  13. Park YJ, Kim KH, Lee JY, Ku Y, Lee SJ, Min BM, et al. Immobilization of bone morphogenetic protein-2 on a nanofibrous chitosan membrane for enhanced guided bone regeneration. Biotechnol Appl Biochem. 2006;43(Pt 1):17–24. https://doi.org/10.1042/BA20050075.

    Article  CAS  Google Scholar 

  14. Camargo PM, Lekovic V, Weinlaender M, Vasilic N, Madzarevic M, Kenney EB. Platelet-rich plasma and bovine porous bone mineral combined with guided tissue regeneration in the treatment of intrabony defects in humans. J Periodontal Res. 2002;37(4):300–6.

    Article  Google Scholar 

  15. Lee SJ, Park YJ, Park SN, Lee YM, Seol YJ, Ku Y, et al. Molded porous poly (L-lactide) membranes for guided bone regeneration with enhanced effects by controlled growth factor release. J Biomed Mater Res. 2001;55(3):295–303.

    Article  CAS  Google Scholar 

  16. Cacciafesta V, Dalstra M, Bosch C, Melsen B, Andreassen TT. Growth hormone treatment promotes guided bone regeneration in rat calvarial defects. Eur J Orthod. 2001;23(6):733–40.

    Article  CAS  Google Scholar 

  17. Damien E, Hing K, Saeed S, Revell PA. A preliminary study on the enhancement of the osteointegration of a novel synthetic hydroxyapatite scaffold in vivo. J Biomed Mater Res A. 2003;66((2):241–6. https://doi.org/10.1002/jbm.a.10564.

    Article  CAS  Google Scholar 

  18. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89. https://doi.org/10.1016/j.cell.2006.06.044.

    Article  CAS  Google Scholar 

  19. Kohavi D, Pollack SR, Brighton C. Short-term effect of guided bone regeneration and electrical stimulation on bone growth in a surgically modelled resorbed dog mandibular ridge. Biomater Artif Cells Immobilization Biotechnol. 1992;20(1):131–8.

    Article  CAS  Google Scholar 

  20. Bonassar LJ, Grodzinsky AJ, Frank EH, Davila SG, Bhaktav NR, Trippel SB. The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I. J Orthop Res. 2001;19(1):11–7. https://doi.org/10.1016/S0736-0266(00)00004-8.

    Article  CAS  Google Scholar 

  21. Parvizi J, Parpura V, Greenleaf JF, Bolander ME. Calcium signaling is required for ultrasound-stimulated aggrecan synthesis by rat chondrocytes. J Orthop Res. 2002;20(1):51–7. https://doi.org/10.1016/S0736-0266(01)00069-9.

    Article  CAS  Google Scholar 

  22. Ciombor DM, Lester G, Aaron RK, Neame P, Caterson B. Low frequency EMF regulates chondrocyte differentiation and expression of matrix proteins. J Orthop Res. 2002;20(1):40–50. https://doi.org/10.1016/S0736-0266(01)00071-7.

    Article  CAS  Google Scholar 

  23. Chao EY, Inoue N. Biophysical stimulation of bone fracture repair, regeneration and remodelling. Eur Cell Mater. 2003;6:72–84. discussion −5

    Article  Google Scholar 

  24. Thompson WR, Scott A, Loghmani MT, Ward SR, Warden SJ. Understanding mechanobiology: physical therapists as a force in mechanotherapy and musculoskeletal regenerative rehabilitation. Phys Ther. 2016;96(4):560–9. https://doi.org/10.2522/ptj.20150224.

    Article  Google Scholar 

  25. Bodle JC, Hanson AD, Loboa EG. Adipose-derived stem cells in functional bone tissue engineering: lessons from bone mechanobiology. Tissue Eng Part B Rev. 2011;17(3):195–211. https://doi.org/10.1089/ten.TEB.2010.0738.

    Article  Google Scholar 

  26. Hanson AD, Marvel SW, Bernacki SH, Banes AJ, van Aalst J, Loboa EG. Osteogenic effects of rest inserted and continuous cyclic tensile strain on hASC lines with disparate osteodifferentiation capabilities. Ann Biomed Eng. 2009;37(5):955–65. https://doi.org/10.1007/s10439-009-9648-7.

    Article  Google Scholar 

  27. Huang SC, Wu TC, Yu HC, Chen MR, Liu CM, Chiang WS, et al. Mechanical strain modulates age-related changes in the proliferation and differentiation of mouse adipose-derived stromal cells. BMC Cell Biol. 2010;11:18. https://doi.org/10.1186/1471-2121-11-18.

    Article  Google Scholar 

  28. Kearney EM, Farrell E, Prendergast PJ, Campbell VA. Tensile strain as a regulator of mesenchymal stem cell osteogenesis. Ann Biomed Eng. 2010;38(5):1767–79. https://doi.org/10.1007/s10439-010-9979-4.

    Article  CAS  Google Scholar 

  29. Teo BK, Ankam S, Chan LY, Yim EK. Nanotopography/mechanical induction of stem-cell differentiation. Methods Cell Biol. 2010;98:241–94. https://doi.org/10.1016/S0091-679X(10)98011-4.

    Article  Google Scholar 

  30. Isaacson BM, Bloebaum RD. Bone bioelectricity: what have we learned in the past 160 years? J Biomed Mater Res A. 2010;95((4):1270–9. https://doi.org/10.1002/jbm.a.32905.

    Article  CAS  Google Scholar 

  31. Frohlich M, Grayson WL, Marolt D, Gimble JM, Kregar-Velikonja N, Vunjak-Novakovic G. Bone grafts engineered from human adipose-derived stem cells in perfusion bioreactor culture. Tissue Eng Part A. 2010;16(1):179–89. https://doi.org/10.1089/ten.TEA.2009.0164.

    Article  Google Scholar 

  32. Tjabringa GS, Vezeridis PS, Zandieh-Doulabi B, Helder MN, Wuisman PI, Klein-Nulend J. Polyamines modulate nitric oxide production and COX-2 gene expression in response to mechanical loading in human adipose tissue-derived mesenchymal stem cells. Stem Cells. 2006;24(10):2262–9. https://doi.org/10.1634/stemcells.2005-0625.

    Article  CAS  Google Scholar 

  33. Liu L, Yuan W, Wang J. Mechanisms for osteogenic differentiation of human mesenchymal stem cells induced by fluid shear stress. Biomech Model Mechanobiol. 2010;9(6):659–70. https://doi.org/10.1007/s10237-010-0206-x.

    Article  Google Scholar 

  34. Jessop HL, Rawlinson SC, Pitsillides AA, Lanyon LE. Mechanical strain and fluid movement both activate extracellular regulated kinase (ERK) in osteoblast-like cells but via different signaling pathways. Bone. 2002;31(1):186–94.

    Article  CAS  Google Scholar 

  35. Hynes RO. Integrins: a family of cell surface receptors. Cell. 1987;48(4):549–54.

    Article  CAS  Google Scholar 

  36. Ingber DE. Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol. 1997;59:575–99. https://doi.org/10.1146/annurev.physiol.59.1.575.

    Article  CAS  Google Scholar 

  37. Wang N, Tytell JD, Ingber DE. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol. 2009;10(1):75–82. https://doi.org/10.1038/nrm2594.

    Article  CAS  Google Scholar 

  38. Thompson WR, Guilluy C, Xie Z, Sen B, Brobst KE, Yen SS, et al. Mechanically activated Fyn utilizes mTORC2 to regulate RhoA and adipogenesis in mesenchymal stem cells. Stem Cells. 2013;31(11):2528–37. https://doi.org/10.1002/stem.1476.

    Article  CAS  Google Scholar 

  39. Leckband DE, le Duc Q, Wang N, de Rooij J. Mechanotransduction at cadherin-mediated adhesions. Curr Opin Cell Biol. 2011;23(5):523–30. https://doi.org/10.1016/j.ceb.2011.08.003.

    Article  CAS  Google Scholar 

  40. Thompson WR, Majid AS, Czymmek KJ, Ruff AL, Garcia J, Duncan RL, et al. Association of the alpha(2)delta(1) subunit with Ca(v)3.2 enhances membrane expression and regulates mechanically induced ATP release in MLO-Y4 osteocytes. J Bone Miner Res. 2011;26(9):2125–39. https://doi.org/10.1002/jbmr.437.

    Article  CAS  Google Scholar 

  41. Srinivasan PP, Parajuli A, Price C, Wang L, Duncan RL, Kirn-Safran CB. Inhibition of T-type voltage sensitive calcium channel reduces load-induced OA in mice and suppresses the catabolic effect of bone mechanical stress on chondrocytes. PLoS One. 2015;10(5):e0127290. https://doi.org/10.1371/journal.pone.0127290.

    Article  CAS  Google Scholar 

  42. Foulds IS, Barker AT. Human skin battery potentials and their possible role in wound healing. Br J Dermatol. 1983;109(5):515–22.

    Article  CAS  Google Scholar 

  43. Song B, Zhao M, Forrester JV, McCaig CD. Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo. Proc Natl Acad Sci U S A. 2002;99(21):13577–82. https://doi.org/10.1073/pnas.202235299.

    Article  CAS  Google Scholar 

  44. Ryaby JT. Clinical effects of electromagnetic and electric fields on fracture healing. Clin Orthop Relat Res 1998(355 Suppl):S205–15.

  45. Manjhi J, Mathur R, Behari J. Effect of low level capacitive-coupled pulsed electric field stimulation on mineral profile of weight-bearing bones in ovariectomized rats. J Biomed Mater Res B Appl Biomater. 2010;92(1):189–95. https://doi.org/10.1002/jbm.b.31505.

    Article  CAS  Google Scholar 

  46. Aaron RK, Ciombor DM, Simon BJ. Treatment of nonunions with electric and electromagnetic fields. Clin Orthop Relat Res. 2004;419:21–9.

    Article  Google Scholar 

  47. Itoh S, Nakamura S, Nakamura M, Shinomiya K, Yamashita K. Enhanced bone ingrowth into hydroxyapatite with interconnected pores by electrical polarization. Biomaterials. 2006;27(32):5572–9. https://doi.org/10.1016/j.biomaterials.2006.07.007.

    Article  CAS  Google Scholar 

  48. Nakamura M, Nagai A, Tanaka Y, Sekijima Y, Yamashita K. Polarized hydroxyapatite promotes spread and motility of osteoblastic cells. J Biomed Mater Res A. 2010;92(2):783–90. https://doi.org/10.1002/jbm.a.32404.

    Article  CAS  Google Scholar 

  49. Nakamura M, Sekijima Y, Nakamura S, Kobayashi T, Niwa K, Yamashita K. Role of blood coagulation components as intermediators of high osteoconductivity of electrically polarized hydroxyapatite. J Biomed Mater Res A. 2006;79(3):627–34. https://doi.org/10.1002/jbm.a.30827.

    Article  CAS  Google Scholar 

  50. Nakamura S, Kobayashi T, Nakamura M, Itoh S, Yamashita K. Electrostatic surface charge acceleration of bone ingrowth of porous hydroxyapatite/beta-tricalcium phosphate ceramics. J Biomed Mater Res A. 2010;92(1):267–75. https://doi.org/10.1002/jbm.a.32354.

    Article  CAS  Google Scholar 

  51. Finke B, Luethen F, Schroeder K, Mueller PD, Bergemann C, Frant M, et al. The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces. Biomaterials. 2007;28(30):4521–34. https://doi.org/10.1016/j.biomaterials.2007.06.028.

    Article  CAS  Google Scholar 

  52. Aaron RK, Boyan BD, Ciombor DM, Schwartz Z, Simon BJ. Stimulation of growth factor synthesis by electric and electromagnetic fields. Clin Orthop Relat Res. 2004;419:30–7.

    Article  Google Scholar 

  53. Stains JP, Civitelli R. Gap junctions in skeletal development and function. Biochim Biophys Acta. 2005;1719(1–2):69–81. https://doi.org/10.1016/j.bbamem.2005.10.012.

    Article  CAS  Google Scholar 

  54. Stains JP, Civitelli R. Cell-to-cell interactions in bone. Biochem Biophys Res Commun. 2005;328(3):721–7. https://doi.org/10.1016/j.bbrc.2004.11.078.

    Article  CAS  Google Scholar 

  55. Ciombor DM, Aaron RK. The role of electrical stimulation in bone repair. Foot Ankle Clin. 2005;10(4):579–93, vii. https://doi.org/10.1016/j.fcl.2005.06.006.

    Article  Google Scholar 

  56. Orr AW, Helmke BP, Blackman BR, Schwartz MA. Mechanisms of mechanotransduction. Dev Cell. 2006;10(1):11–20. https://doi.org/10.1016/j.devcel.2005.12.006.

    Article  CAS  Google Scholar 

  57. Kotwal A, Schmidt CE. Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. Biomaterials. 2001;22(10):1055–64.

    Article  CAS  Google Scholar 

  58. Fioravanti A, Nerucci F, Collodel G, Markoll R, Marcolongo R. Biochemical and morphological study of human articular chondrocytes cultivated in the presence of pulsed signal therapy. Ann Rheum Dis. 2002;61(11):1032–3.

    Article  CAS  Google Scholar 

  59. Zhuang H, Wang W, Seldes RM, Tahernia AD, Fan H, Brighton CT. Electrical stimulation induces the level of TGF-beta1 mRNA in osteoblastic cells by a mechanism involving calcium/calmodulin pathway. Biochem Biophys Res Commun. 1997;237(2):225–9. https://doi.org/10.1006/bbrc.1997.7118.

    Article  CAS  Google Scholar 

  60. Bodamyali T, Bhatt B, Hughes FJ, Winrow VR, Kanczler JM, Simon B, et al. Pulsed electromagnetic fields simultaneously induce osteogenesis and upregulate transcription of bone morphogenetic proteins 2 and 4 in rat osteoblasts in vitro. Biochem Biophys Res Commun. 1998;250(2):458–61. https://doi.org/10.1006/bbrc.1998.9243.

    Article  CAS  Google Scholar 

  61. Tong J, Sun L, Zhu B, Fan Y, Ma X, Yu L, et al. Pulsed electromagnetic fields promote the proliferation and differentiation of osteoblasts by reinforcing intracellular calcium transients. Bioelectromagnetics. 2017;38(7):541–9. https://doi.org/10.1002/bem.22076.

    Article  CAS  Google Scholar 

  62. Zhou J, He H, Yang L, Chen S, Guo H, Xia L, et al. Effects of pulsed electromagnetic fields on bone mass and Wnt/beta-catenin signaling pathway in ovariectomized rats. Arch Med Res. 2012;43(4):274–82. https://doi.org/10.1016/j.arcmed.2012.06.002.

    Article  CAS  Google Scholar 

  63. Lei T, Liang Z, Li F, Tang C, Xie K, Wang P, et al. Pulsed electromagnetic fields (PEMF) attenuate changes in vertebral bone mass, architecture and strength in ovariectomized mice. Bone. 2018;108:10–9. https://doi.org/10.1016/j.bone.2017.12.008.

    Article  CAS  Google Scholar 

  64. Ehnert S, Fentz AK, Schreiner A, Birk J, Wilbrand B, Ziegler P, et al. Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of *O2(-) and H2O2. Sci Rep. 2017;7(1):14544. https://doi.org/10.1038/s41598-017-14983-9.

    Article  Google Scholar 

  65. Ehnert S, Falldorf K, Fentz AK, Ziegler P, Schroter S, Freude T, et al. Primary human osteoblasts with reduced alkaline phosphatase and matrix mineralization baseline capacity are responsive to extremely low frequency pulsed electromagnetic field exposure—clinical implication possible. Bone Rep. 2015;3:48–56. https://doi.org/10.1016/j.bonr.2015.08.002.

    Article  Google Scholar 

  66. Dimitriou R, Babis GC. Biomaterial osseointegration enhancement with biophysical stimulation. J Musculoskelet Neuronal Interact. 2007;7(3):253–65.

    CAS  Google Scholar 

  67. Hammerick KE, James AW, Huang Z, Prinz FB, Longaker MT. Pulsed direct current electric fields enhance osteogenesis in adipose-derived stromal cells. Tissue Eng Part A. 2010;16(3):917–31. https://doi.org/10.1089/ten.TEA.2009.0267.

    Article  CAS  Google Scholar 

  68. McCullen SD, McQuilling JP, Grossfeld RM, Lubischer JL, Clarke LI, Loboa EG. Application of low-frequency alternating current electric fields via interdigitated electrodes: effects on cellular viability, cytoplasmic calcium, and osteogenic differentiation of human adipose-derived stem cells. Tissue Eng Part C Methods. 2010;16(6):1377–86. https://doi.org/10.1089/ten.TEC.2009.0751.

    Article  CAS  Google Scholar 

  69. Victoria G, Petrisor B, Drew B, Dick D. Bone stimulation for fracture healing: what’s all the fuss? Indian J Orthop. 2009;43(2):117–20. https://doi.org/10.4103/0019-5413.50844.

    Article  Google Scholar 

  70. Panagopoulos DJ, Karabarbounis A, Margaritis LH. Mechanism for action of electromagnetic fields on cells. Biochem Biophys Res Commun. 2002;298(1):95–102.

    Article  CAS  Google Scholar 

  71. Ross CL, Siriwardane M, Almeida-Porada G, Porada CD, Brink P, Christ GJ, et al. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation. Stem Cell Res. 2015;15(1):96–108. https://doi.org/10.1016/j.scr.2015.04.009.

    Article  Google Scholar 

  72. Funk RH, Monsees T, Ozkucur N. Electromagnetic effects—from cell biology to medicine. Prog Histochem Cytochem. 2009;43(4):177–264. https://doi.org/10.1016/j.proghi.2008.07.001.

    Article  CAS  Google Scholar 

  73. Cifra M, Fields JZ, Farhadi A. Electromagnetic cellular interactions. Prog Biophys Mol Biol. 2011;105(3):223–46. https://doi.org/10.1016/j.pbiomolbio.2010.07.003.

    Article  CAS  Google Scholar 

  74. Buchtala V. Present state of ultrasound therapy. Dia Med. 1950;22(70):2944–50.

    CAS  Google Scholar 

  75. Claes L, Willie B. The enhancement of bone regeneration by ultrasound. Prog Biophys Mol Biol. 2007;93(1–3):384–98. https://doi.org/10.1016/j.pbiomolbio.2006.07.021.

    Article  Google Scholar 

  76. Jung YJ, Kim R, Ham HJ, Park SI, Lee MY, Kim J, et al. Focused low-intensity pulsed ultrasound enhances bone regeneration in rat calvarial bone defect through enhancement of cell proliferation. Ultrasound Med Biol. 2015;41(4):999–1007. https://doi.org/10.1016/j.ultrasmedbio.2014.11.008.

    Article  Google Scholar 

  77. Saito M, Fujii K, Tanaka T, Soshi S. Effect of low- and high-intensity pulsed ultrasound on collagen post-translational modifications in MC3T3-E1 osteoblasts. Calcif Tissue Int. 2004;75(5):384–95. https://doi.org/10.1007/s00223-004-0292-9.

    Article  CAS  Google Scholar 

  78. Sheyn D, Kimelman-Bleich N, Pelled G, Zilberman Y, Gazit D, Gazit Z. Ultrasound-based nonviral gene delivery induces bone formation in vivo. Gene Ther. 2008;15(4):257–66. https://doi.org/10.1038/sj.gt.3303070.

    Article  CAS  Google Scholar 

  79. Angle SR, Sena K, Sumner DR, Virdi AS. Osteogenic differentiation of rat bone marrow stromal cells by various intensities of low-intensity pulsed ultrasound. Ultrasonics. 2011;51(3):281–8. https://doi.org/10.1016/j.ultras.2010.09.004.

    Article  CAS  Google Scholar 

  80. Suzuki A, Takayama T, Suzuki N, Sato M, Fukuda T, Ito K. Daily low-intensity pulsed ultrasound-mediated osteogenic differentiation in rat osteoblasts. Acta Biochim Biophys Sin Shanghai. 2009;41(2):108–15.

    Article  CAS  Google Scholar 

  81. Yang RS, Lin WL, Chen YZ, Tang CH, Huang TH, Lu BY, et al. Regulation by ultrasound treatment on the integrin expression and differentiation of osteoblasts. Bone. 2005;36(2):276–83. https://doi.org/10.1016/j.bone.2004.10.009.

    Article  CAS  Google Scholar 

  82. Unsworth J, Kaneez S, Harris S, Ridgway J, Fenwick S, Chenery D, et al. Pulsed low intensity ultrasound enhances mineralisation in preosteoblast cells. Ultrasound Med Biol. 2007;33(9):1468–74. https://doi.org/10.1016/j.ultrasmedbio.2006.12.003.

    Article  Google Scholar 

  83. Dalla-Bona DA, Tanaka E, Oka H, Yamano E, Kawai N, Miyauchi M, et al. Effects of ultrasound on cementoblast metabolism in vitro. Ultrasound Med Biol. 2006;32(6):943–8. https://doi.org/10.1016/j.ultrasmedbio.2006.01.015.

    Article  Google Scholar 

  84. Ren L, Yang Z, Song J, Wang Z, Deng F, Li W. Involvement of p38 MAPK pathway in low intensity pulsed ultrasound induced osteogenic differentiation of human periodontal ligament cells. Ultrasonics. 2013;53(3):686–90. https://doi.org/10.1016/j.ultras.2012.10.008.

    Article  CAS  Google Scholar 

  85. Bandow K, Nishikawa Y, Ohnishi T, Kakimoto K, Soejima K, Iwabuchi S, et al. Low-intensity pulsed ultrasound (LIPUS) induces RANKL, MCP-1, and MIP-1beta expression in osteoblasts through the angiotensin II type 1 receptor. J Cell Physiol. 2007;211(2):392–8. https://doi.org/10.1002/jcp.20944.

    Article  CAS  Google Scholar 

  86. Wang FS, Kuo YR, Wang CJ, Yang KD, Chang PR, Huang YT, et al. Nitric oxide mediates ultrasound-induced hypoxia-inducible factor-1alpha activation and vascular endothelial growth factor—a expression in human osteoblasts. Bone. 2004;35(1):114–23. https://doi.org/10.1016/j.bone.2004.02.012.

    Article  CAS  Google Scholar 

  87. Ito M, Azuma Y, Ohta T, Komoriya K. Effects of ultrasound and 1,25-dihydroxyvitamin D3 on growth factor secretion in co-cultures of osteoblasts and endothelial cells. Ultrasound Med Biol. 2000;26(1):161–6.

    Article  CAS  Google Scholar 

  88. Kim TH, Oh SH, Na SY, Chun SY, Lee JH. Effect of biological/physical stimulation on guided bone regeneration through asymmetrically porous membrane. J Biomed Mater Res A. 2012;100((6):1512–20. https://doi.org/10.1002/jbm.a.34086.

    Article  CAS  Google Scholar 

  89. Lee SY, Koh A, Niikura T, Oe K, Koga T, Dogaki Y, et al. Low-intensity pulsed ultrasound enhances BMP-7-induced osteogenic differentiation of human fracture hematoma-derived progenitor cells in vitro. J Orthop Trauma. 2013;27(1):29–33. https://doi.org/10.1097/BOT.0b013e3182519492.

    Article  Google Scholar 

  90. Azuma Y, Ito M, Harada Y, Takagi H, Ohta T, Jingushi S. Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus. J Bone Miner Res. 2001;16(4):671–80. https://doi.org/10.1359/jbmr.2001.16.4.671.

    Article  CAS  Google Scholar 

  91. Or M, Kimmel E. Modeling linear vibration of cell nucleus in low intensity ultrasound field. Ultrasound Med Biol. 2009;35(6):1015–25. https://doi.org/10.1016/j.ultrasmedbio.2008.11.011.

    Article  Google Scholar 

  92. Mizrahi N, Zhou EH, Lenormand G, Krishnan R, Weihs D, Butler JP, et al. Low intensity ultrasound perturbs cytoskeleton dynamics. Soft Matter. 2012;8(8):2438–43. https://doi.org/10.1039/C2SM07246G.

    Article  CAS  Google Scholar 

  93. Krasovitski B, Frenkel V, Shoham S, Kimmel E. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc Natl Acad Sci U S A. 2011;108(8):3258–63. https://doi.org/10.1073/pnas.1015771108.

    Article  Google Scholar 

  94. Pounder NM, Harrison AJ. Low intensity pulsed ultrasound for fracture healing: a review of the clinical evidence and the associated biological mechanism of action. Ultrasonics. 2008;48(4):330–8. https://doi.org/10.1016/j.ultras.2008.02.005.

    Article  CAS  Google Scholar 

  95. Tang CH, Yang RS, Huang TH, Lu DY, Chuang WJ, Huang TF, et al. Ultrasound stimulates cyclooxygenase-2 expression and increases bone formation through integrin, focal adhesion kinase, phosphatidylinositol 3-kinase, and Akt pathway in osteoblasts. Mol Pharmacol. 2006;69(6):2047–57. https://doi.org/10.1124/mol.105.022160.

    Article  CAS  Google Scholar 

  96. Watabe H, Furuhama T, Tani-Ishii N, Mikuni-Takagaki Y. Mechanotransduction activates alpha(5)beta(1) integrin and PI3K/Akt signaling pathways in mandibular osteoblasts. Exp Cell Res. 2011;317(18):2642–9. https://doi.org/10.1016/j.yexcr.2011.07.015.

    Article  CAS  Google Scholar 

  97. Louw TM, Budhiraja G, Viljoen HJ, Subramanian A. Mechanotransduction of ultrasound is frequency dependent below the cavitation threshold. Ultrasound Med Biol. 2013;39(7):1303–19. https://doi.org/10.1016/j.ultrasmedbio.2013.01.015.

    Article  Google Scholar 

  98. Alvarenga EC, Rodrigues R, Caricati-Neto A, Silva-Filho FC, Paredes-Gamero EJ, Ferreira AT. Low-intensity pulsed ultrasound-dependent osteoblast proliferation occurs by via activation of the P2Y receptor: role of the P2Y1 receptor. Bone. 2010;46(2):355–62. https://doi.org/10.1016/j.bone.2009.09.017.

    Article  CAS  Google Scholar 

  99. Sun S, Liu Y, Lipsky S, Cho M. Physical manipulation of calcium oscillations facilitates osteodifferentiation of human mesenchymal stem cells. FASEB J. 2007;21(7):1472–80. https://doi.org/10.1096/fj.06-7153com.

    Article  CAS  Google Scholar 

  100. Sena K, Angle SR, Kanaji A, Aher C, Karwo DG, Sumner DR, et al. Low-intensity pulsed ultrasound (LIPUS) and cell-to-cell communication in bone marrow stromal cells. Ultrasonics. 2011;51(5):639–44. https://doi.org/10.1016/j.ultras.2011.01.007.

    Article  CAS  Google Scholar 

  101. Padilla F, Puts R, Vico L, Raum K. Stimulation of bone repair with ultrasound: a review of the possible mechanic effects. Ultrasonics. 2014;54(5):1125–45. https://doi.org/10.1016/j.ultras.2014.01.004.

    Article  CAS  Google Scholar 

  102. Argintar E, Edwards S, Delahay J. Bone morphogenetic proteins in orthopaedic trauma surgery. Injury. 2011;42(8):730–4. https://doi.org/10.1016/j.injury.2010.11.016.

    Article  Google Scholar 

  103. Hou CH, Lin J, Huang SC, Hou SM, Tang CH. Ultrasound stimulates NF-kappaB activation and iNOS expression via the Ras/Raf/MEK/ERK signaling pathway in cultured preosteoblasts. J Cell Physiol. 2009;220(1):196–203. https://doi.org/10.1002/jcp.21751.

    Article  CAS  Google Scholar 

  104. Ikeda K, Takayama T, Suzuki N, Shimada K, Otsuka K, Ito K. Effects of low-intensity pulsed ultrasound on the differentiation of C2C12 cells. Life Sci. 2006;79(20):1936–43. https://doi.org/10.1016/j.lfs.2006.06.029.

    Article  CAS  Google Scholar 

  105. Mittermayr R, Antonic V, Hartinger J, Kaufmann H, Redl H, Teot L, et al. Extracorporeal shock wave therapy (ESWT) for wound healing: technology, mechanisms. and clinical efficacy Wound Repair Regen. 2012;20(4):456–65. https://doi.org/10.1111/j.1524-475X.2012.00796.x.

    Article  Google Scholar 

  106. Byron CR, Benson BM, Stewart AA, Stewart MC. Effects of radial shock waves on membrane permeability and viability of chondrocytes and structure of articular cartilage in equine cartilage explants. Am J Vet Res. 2005;66(10):1757–63.

    Article  Google Scholar 

  107. Wang CJ, Wang FS, Ko JY, Huang HY, Chen CJ, Sun YC, et al. Extracorporeal shockwave therapy shows regeneration in hip necrosis. Rheumatology (Oxford, England). 2008;47(4):542–6. https://doi.org/10.1093/rheumatology/ken020.

    Article  Google Scholar 

  108. Ma HZ, Zeng BF, Li XL. Upregulation of VEGF in subchondral bone of necrotic femoral heads in rabbits with use of extracorporeal shock waves. Calcif Tissue Int. 2007;81(2):124–31. https://doi.org/10.1007/s00223-007-9046-9.

    Article  CAS  Google Scholar 

  109. Mont MA, Jones LC, Seyler TM, Marulanda GA, Saleh KJ, Delanois RE. New treatment approaches for osteonecrosis of the femoral head: an overview. Instr Course Lect. 2007;56:197–212.

    Google Scholar 

  110. Wang CJ, Yang KD, Ko JY, Huang CC, Huang HY, Wang FS. The effects of shockwave on bone healing and systemic concentrations of nitric oxide (NO), TGF-beta1, VEGF and BMP-2 in long bone non-unions. Nitric Oxide. 2009;20(4):298–303. https://doi.org/10.1016/j.niox.2009.02.006.

    Article  CAS  Google Scholar 

  111. Weinstein JN, Oster DM, Park JB, Park SH, Loening S. The effect of the extracorporeal shock-wave lithotriptor on the bone-cement interface in dogs. Clin Orthop Relat R. 1988;235:261–7.

    Google Scholar 

  112. Narasaki K, Shimizu H, Beppu M, Aoki H, Takagi M, Takashi M. Effect of extracorporeal shock waves on callus formation during bone lengthening. J Orthop Sci. 2003;8(4):474–81. https://doi.org/10.1007/s00776-003-0664-4.

    Article  Google Scholar 

  113. Hofmann A, Ritz U, Hessmann MH, Alini M, Rommens PM, Rompe JD. Extracorporeal shock wave-mediated changes in proliferation, differentiation, and gene expression of human osteoblasts. J Trauma. 2008;65(6):1402–10. https://doi.org/10.1097/TA.0b013e318173e7c2.

    Article  Google Scholar 

  114. Wang CJ, Weng LH, Ko JY, Wang JW, Chen JM, Sun YC, et al. Extracorporeal shockwave shows regression of osteoarthritis of the knee in rats. J Surg Res. 2011;171(2):601–8. https://doi.org/10.1016/j.jss.2010.06.042.

    Article  Google Scholar 

  115. Suhr F, Delhasse Y, Bungartz G, Schmidt A, Pfannkuche K, Bloch W. Cell biological effects of mechanical stimulations generated by focused extracorporeal shock wave applications on cultured human bone marrow stromal cells. Stem Cell Res. 2013;11(2):951–64. https://doi.org/10.1016/j.scr.2013.05.010.

    Article  Google Scholar 

  116. Catalano MG, Marano F, Rinella L, de Girolamo L, Bosco O, Fortunati N, et al. Extracorporeal shockwaves (ESWs) enhance the osteogenic medium-induced differentiation of adipose-derived stem cells into osteoblast-like cells. J Tissue Eng Regen Med. 2017;11(2):390–9. https://doi.org/10.1002/term.1922.

    Article  CAS  Google Scholar 

  117. Wang FS, Yang KD, Chen RF, Wang CJ, Sheen-Chen SM. Extracorporeal shock wave promotes growth and differentiation of bone-marrow stromal cells towards osteoprogenitors associated with induction of TGF-beta1. J Bone Joint Surg. 2002;84(3):457–61.

    Article  CAS  Google Scholar 

  118. Da Costa Gomez TM, Radtke CL, Kalscheur VL, Swain CA, Scollay MC, Edwards RB, et al. Effect of focused and radial extracorporeal shock wave therapy on equine bone microdamage. Vet Surg. 2004;33(1):49–55.

    Article  Google Scholar 

  119. Wang CJ, Wang FS, Yang KD, Weng LH, Hsu CC, Huang CS, et al. Shock wave therapy induces neovascularization at the tendon-bone junction. A study in rabbits. J Orthop Res. 2003;21(6):984–9. https://doi.org/10.1016/S0736-0266(03)00104-9.

    Article  Google Scholar 

  120. Chen YJ, Kuo YR, Yang KD, Wang CJ, Sheen Chen SM, Huang HC, et al. Activation of extracellular signal-regulated kinase (ERK) and p38 kinase in shock wave-promoted bone formation of segmental defect in rats. Bone. 2004;34(3):466–77. https://doi.org/10.1016/j.bone.2003.11.013.

    Article  CAS  Google Scholar 

  121. Wang FS, Yang KD, Kuo YR, Wang CJ, Sheen-Chen SM, Huang HC, et al. Temporal and spatial expression of bone morphogenetic proteins in extracorporeal shock wave-promoted healing of segmental defect. Bone. 2003;32(4):387–96.

    Article  CAS  Google Scholar 

  122. Yip HK, Chang LT, Sun CK, Youssef AA, Sheu JJ, Wang CJ. Shock wave therapy applied to rat bone marrow-derived mononuclear cells enhances formation of cells stained positive for CD31 and vascular endothelial growth factor. Circ J. 2008;72(1):150–6.

    Article  CAS  Google Scholar 

  123. Wang FS, Wang CJ, Huang HJ, Chung H, Chen RF, Yang KD. Physical shock wave mediates membrane hyperpolarization and Ras activation for osteogenesis in human bone marrow stromal cells. Biochem Biophys Res Commun. 2001;287(3):648–55. https://doi.org/10.1006/bbrc.2001.5654.

    Article  CAS  Google Scholar 

  124. McKinlay A, Vecchia P, Ziegelberger G, Greinert R. Progress in biophysics and molecular biology. Editorial Prog Biophys Mol Biol. 2011;107(3):311. https://doi.org/10.1016/j.pbiomolbio.2011.09.021.

    Article  Google Scholar 

  125. Wang FS, Wang CJ, Sheen-Chen SM, Kuo YR, Chen RF, Yang KD. Superoxide mediates shock wave induction of ERK-dependent osteogenic transcription factor (CBFA1) and mesenchymal cell differentiation toward osteoprogenitors. J Biol Chem. 2002;277(13):10931–7. https://doi.org/10.1074/jbc.M104587200.

    Article  CAS  Google Scholar 

  126. Marino G, Rosso F, Cafiero G, Tortora C, Moraci M, Barbarisi M, et al. Beta-tricalcium phosphate 3D scaffold promote alone osteogenic differentiation of human adipose stem cells: in vitro study. J Mater Sci Mater Med. 2010;21(1):353–63. https://doi.org/10.1007/s10856-009-3840-z.

    Article  CAS  Google Scholar 

  127. Liu Q, Cen L, Yin S, Chen L, Liu G, Chang J, et al. A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and beta-TCP ceramics. Biomaterials. 2008;29(36):4792–9. https://doi.org/10.1016/j.biomaterials.2008.08.039.

    Article  CAS  Google Scholar 

  128. McCullen SD, Haslauer CM, Loboa EG. Musculoskeletal mechanobiology: interpretation by external force and engineered substratum. J Biomech. 2010;43(1):119–27. https://doi.org/10.1016/j.jbiomech.2009.09.017.

    Article  Google Scholar 

  129. Joshi SD, Webb K. Variation of cyclic strain parameters regulates development of elastic modulus in fibroblast/substrate constructs. J Orthop Res. 2008;26(8):1105–13. https://doi.org/10.1002/jor.20626.

    Article  Google Scholar 

  130. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004;6(4):483–95.

    Article  CAS  Google Scholar 

  131. Gregg RH 2nd, McCarthy D. Laser periodontal therapy for bone regeneration. Dentistry Today. 2002;21(5):54–9.

    Google Scholar 

  132. Zein R, Selting W, Benedicenti S. Effect of low-level laser therapy on bone regeneration during osseointegration and bone graft. Photomed Laser Surg. 2017;35(12):649–58. https://doi.org/10.1089/pho.2017.4275.

    Article  Google Scholar 

  133. Isler SC, Cansiz E, Tanyel C, Soluk M, Selvi F, Cebi Z. The effect of irrigation temperature on bone healing. Int J Med Sci. 2011;8(8):704–8.

    Article  Google Scholar 

  134. Mishra SK, Chowdhary R. Heat generated by dental implant drills during osteotomy—a review: heat generated by dental implant drills. J Indian Prosthodont Soc. 2014;14(2):131–43. https://doi.org/10.1007/s13191-014-0350-6.

    Article  CAS  Google Scholar 

  135. Yasuda K, Okazaki Y, Abe Y, Tsuga K. Effective UV/ozone irradiation method for decontamination of hydroxyapatite surfaces. Heliyon. 2017;3(8):e00372. https://doi.org/10.1016/j.heliyon.2017.e00372.

    Article  Google Scholar 

  136. Chen C, Tambe DT, Deng L, Yang L. Biomechanical properties and mechanobiology of the articular chondrocyte. Am J Physiol Cell Physiol. 2013;305(12):C1202–8. https://doi.org/10.1152/ajpcell.00242.2013.

    Article  CAS  Google Scholar 

  137. Guilak F, Erickson GR, Ting-Beall HP. The effects of osmotic stress on the viscoelastic and physical properties of articular chondrocytes. Biophys J. 2002;82(2):720–7. https://doi.org/10.1016/S0006-3495(02)75434-9.

    Article  CAS  Google Scholar 

  138. Kisiday JD, Lee JH, Siparsky PN, Frisbie DD, Flannery CR, Sandy JD, et al. Catabolic responses of chondrocyte-seeded peptide hydrogel to dynamic compression. Ann Biomed Eng. 2009;37(7):1368–75. https://doi.org/10.1007/s10439-009-9699-9.

    Article  Google Scholar 

  139. Nicodemus GD, Bryant SJ. Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels. Osteoarthr Cartil. 2010;18(1):126–37. https://doi.org/10.1016/j.joca.2009.08.005.

    Article  CAS  Google Scholar 

  140. Jeon JE, Schrobback K, Hutmacher DW, Klein TJ. Dynamic compression improves biosynthesis of human zonal chondrocytes from osteoarthritis patients. Osteoarthr Cartil. 2012;20(8):906–15. https://doi.org/10.1016/j.joca.2012.04.019.

    Article  CAS  Google Scholar 

  141. Shieh AC, Athanasiou KA. Dynamic compression of single cells. Osteoarthr Cartil. 2007;15(3):328–34. https://doi.org/10.1016/j.joca.2006.08.013.

    Article  CAS  Google Scholar 

  142. Nugent GE, Aneloski NM, Schmidt TA, Schumacher BL, Voegtline MS, Sah RL. Dynamic shear stimulation of bovine cartilage biosynthesis of proteoglycan 4. Arthritis Rheum. 2006;54(6):1888–96. https://doi.org/10.1002/art.21831.

    Article  CAS  Google Scholar 

  143. Grad S, Lee CR, Gorna K, Gogolewski S, Wimmer MA, Alini M. Surface motion upregulates superficial zone protein and hyaluronan production in chondrocyte-seeded three-dimensional scaffolds. Tissue Eng. 2005;11(1–2):249–56. https://doi.org/10.1089/ten.2005.11.249.

    Article  CAS  Google Scholar 

  144. Ofek G, Dowling EP, Raphael RM, McGarry JP, Athanasiou KA. Biomechanics of single chondrocytes under direct shear. Biomech Model Mechanobiol. 2010;9(2):153–62. https://doi.org/10.1007/s10237-009-0166-1.

    Article  Google Scholar 

  145. Angele P, Yoo JU, Smith C, Mansour J, Jepsen KJ, Nerlich M, et al. Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res. 2003;21(3):451–7. https://doi.org/10.1016/S0736-0266(02)00230-9.

    Article  CAS  Google Scholar 

  146. Trindade MC, Shida J, Ikenoue T, Lee MS, Lin EY, Yaszay B, et al. Intermittent hydrostatic pressure inhibits matrix metalloproteinase and pro-inflammatory mediator release from human osteoarthritic chondrocytes in vitro. Osteoarthr Cartil. 2004;12(9):729–35. https://doi.org/10.1016/j.joca.2004.05.008.

    Article  Google Scholar 

  147. Zhang Y, Tang CL, Chen WJ, Zhang Q, Wang SL. Dynamic compression combined with exogenous SOX-9 promotes chondrogenesis of adipose-derived mesenchymal stem cells in PLGA scaffold. Eur Rev Med Pharmacol Sci. 2015;19(14):2671–8.

    CAS  Google Scholar 

  148. Shahin K, Doran PM. Tissue engineering of cartilage using a mechanobioreactor exerting simultaneous mechanical shear and compression to simulate the rolling action of articular joints. Biotechnol Bioeng. 2012;109(4):1060–73. https://doi.org/10.1002/bit.24372.

    Article  CAS  Google Scholar 

  149. McMahon LA, Reid AJ, Campbell VA, Prendergast PJ. Regulatory effects of mechanical strain on the chondrogenic differentiation of MSCs in a collagen-GAG scaffold: experimental and computational analysis. Ann Biomed Eng. 2008;36(2):185–94. https://doi.org/10.1007/s10439-007-9416-5.

    Article  Google Scholar 

  150. Schatti O, Grad S, Goldhahn J, Salzmann G, Li Z, Alini M, et al. A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells. Eur Cell Mater. 2011;22:214–25.

    Article  CAS  Google Scholar 

  151. Li Z, Yao SJ, Alini M, Stoddart MJ. Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin-polyurethane composites is modulated by frequency and amplitude of dynamic compression and shear stress. Tissue Eng Part A. 2010;16(2):575–84. https://doi.org/10.1089/ten.TEA.2009.0262.

    Article  CAS  Google Scholar 

  152. Huang AH, Farrell MJ, Kim M, Mauck RL. Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogel. Eur Cell Mater. 2010;19:72–85.

    Article  CAS  Google Scholar 

  153. Thorpe SD, Buckley CT, Vinardell T, O'Brien FJ, Campbell VA, Kelly DJ. Dynamic compression can inhibit chondrogenesis of mesenchymal stem cells. Biochem Biophys Res Commun. 2008;377(2):458–62. https://doi.org/10.1016/j.bbrc.2008.09.154.

    Article  CAS  Google Scholar 

  154. Kock L, van Donkelaar CC, Ito K. Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res. 2012;347(3):613–27. https://doi.org/10.1007/s00441-011-1243-1.

    Article  CAS  Google Scholar 

  155. Haudenschild DR, D'Lima DD, Lotz MK. Dynamic compression of chondrocytes induces a Rho kinase-dependent reorganization of the actin cytoskeleton. Biorheology. 2008;45(3–4):219–28.

    CAS  Google Scholar 

  156. Guilak F. Compression-induced changes in the shape and volume of the chondrocyte nucleus. J Biomech. 1995;28(12):1529–41.

    Article  CAS  Google Scholar 

  157. Ingber D. Integrins as mechanochemical transducers. Curr Opin Cell Biol. 1991;3(5):841–8.

    Article  CAS  Google Scholar 

  158. Shakibaei M. Inhibition of chondrogenesis by integrin antibody in vitro. Exp Cell Res. 1998;240(1):95–106. https://doi.org/10.1006/excr.1998.3933.

    Article  CAS  Google Scholar 

  159. Salter DM, Millward-Sadler SJ, Nuki G, Wright MO. Integrin-interleukin-4 mechanotransduction pathways in human chondrocytes. Clin Orthop Relat Res 2001(391 Suppl):S49–60.

    Article  Google Scholar 

  160. Baroja-Mazo A, Barbera-Cremades M, Pelegrin P. The participation of plasma membrane hemichannels to purinergic signaling. Biochim Biophys Acta. 2013;1828(1):79–93. https://doi.org/10.1016/j.bbamem.2012.01.002.

    Article  CAS  Google Scholar 

  161. Millward-Sadler SJ, Wright MO, Flatman PW, Salter DM. ATP in the mechanotransduction pathway of normal human chondrocytes. Biorheology. 2004;41(3–4):567–75.

    CAS  Google Scholar 

  162. Pingguan-Murphy B, El-Azzeh M, Bader DL, Knight MM. Cyclic compression of chondrocytes modulates a purinergic calcium signalling pathway in a strain rate- and frequency-dependent manner. J Cell Physiol. 2006;209(2):389–97. https://doi.org/10.1002/jcp.20747.

    Article  CAS  Google Scholar 

  163. Guilak F, Zell RA, Erickson GR, Grande DA, Rubin CT, McLeod KJ, et al. Mechanically induced calcium waves in articular chondrocytes are inhibited by gadolinium and amiloride. J Orthop Res. 1999;17(3):421–9. https://doi.org/10.1002/jor.1100170319.

    Article  CAS  Google Scholar 

  164. Guilak F, Leddy HA, Liedtke W. Transient receptor potential vanilloid 4: the sixth sense of the musculoskeletal system? Ann N Y Acad Sci. 2010;1192:404–9. https://doi.org/10.1111/j.1749-6632.2010.05389.x.

    Article  CAS  Google Scholar 

  165. Muramatsu S, Wakabayashi M, Ohno T, Amano K, Ooishi R, Sugahara T, et al. Functional gene screening system identified TRPV4 as a regulator of chondrogenic differentiation. J Biol Chem. 2007;282(44):32158–67. https://doi.org/10.1074/jbc.M706158200.

    Article  CAS  Google Scholar 

  166. Roberts SR, Knight MM, Lee DA, Bader DL. Mechanical compression influences intracellular Ca2+ signaling in chondrocytes seeded in agarose constructs. J Appl Physiol (1985). 2001;90(4):1385–91. https://doi.org/10.1152/jappl.2001.90.4.1385.

    Article  CAS  Google Scholar 

  167. Kono T, Nishikori T, Kataoka H, Uchio Y, Ochi M, Enomoto K. Spontaneous oscillation and mechanically induced calcium waves in chondrocytes. Cell Biochem Funct. 2006;24(2):103–11. https://doi.org/10.1002/cbf.1304.

    Article  CAS  Google Scholar 

  168. Edlich M, Yellowley CE, Jacobs CR, Donahue HJ. Oscillating fluid flow regulates cytosolic calcium concentration in bovine articular chondrocytes. J Biomech. 2001;34(1):59–65.

    Article  CAS  Google Scholar 

  169. Browning JA, Saunders K, Urban JP, Wilkins RJ. The influence and interactions of hydrostatic and osmotic pressures on the intracellular milieu of chondrocytes. Biorheology. 2004;41(3–4):299–308.

    CAS  Google Scholar 

  170. Chao PH, West AC, Hung CT. Chondrocyte intracellular calcium, cytoskeletal organization, and gene expression responses to dynamic osmotic loading. Am J Physiol Cell Physiol. 2006;291(4):C718–25. https://doi.org/10.1152/ajpcell.00127.2005.

    Article  CAS  Google Scholar 

  171. Han SK, Wouters W, Clark A, Herzog W. Mechanically induced calcium signaling in chondrocytes in situ. J Orthop Res. 2012;30(3):475–81. https://doi.org/10.1002/jor.21536.

    Article  CAS  Google Scholar 

  172. Fanning PJ, Emkey G, Smith RJ, Grodzinsky AJ, Szasz N, Trippel SB. Mechanical regulation of mitogen-activated protein kinase signaling in articular cartilage. J Biol Chem. 2003;278(51):50940–8. https://doi.org/10.1074/jbc.M305107200.

    Article  CAS  Google Scholar 

  173. Fitzgerald JB, Jin M, Chai DH, Siparsky P, Fanning P, Grodzinsky AJ. Shear- and compression-induced chondrocyte transcription requires MAPK activation in cartilage explants. J Biol Chem. 2008;283(11):6735–43. https://doi.org/10.1074/jbc.M708670200.

    Article  CAS  Google Scholar 

  174. Tew SR, Vasieva O, Peffers MJ, Clegg PD. Post-transcriptional gene regulation following exposure of osteoarthritic human articular chondrocytes to hyperosmotic conditions. Osteoarthr Cartil. 2011;19(8):1036–46. https://doi.org/10.1016/j.joca.2011.04.015.

    Article  CAS  Google Scholar 

  175. Bougault C, Aubert-Foucher E, Paumier A, Perrier-Groult E, Huot L, Hot D, et al. Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes. PLoS One. 2012;7(5):e36964. https://doi.org/10.1371/journal.pone.0036964.

    Article  CAS  Google Scholar 

  176. Mouw JK, Connelly JT, Wilson CG, Michael KE, Levenston ME. Dynamic compression regulates the expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells. Stem Cells. 2007;25(3):655–63. https://doi.org/10.1634/stemcells.2006-0435.

    Article  CAS  Google Scholar 

  177. Li Z, Kupcsik L, Yao SJ, Alini M, Stoddart MJ. Mechanical load modulates chondrogenesis of human mesenchymal stem cells through the TGF-beta pathway. J Cell Mol Med. 2010;14(6A):1338–46. https://doi.org/10.1111/j.1582-4934.2009.00780.x.

    Article  CAS  Google Scholar 

  178. Frank EH, Grodzinsky AJ. Cartilage electromechanics—I. Electrokinetic transduction and the effects of electrolyte pH and ionic strength. J Biomech. 1987;20(6):615–27.

    Article  CAS  Google Scholar 

  179. Frank EH, Grodzinsky AJ. Cartilage electromechanics—II. A continuum model of cartilage electrokinetics and correlation with experiments. J Biomech. 1987;20(6):629–39.

    Article  CAS  Google Scholar 

  180. MacGinitie LA, Gluzband YA, Grodzinsky AJ. Electric field stimulation can increase protein synthesis in articular cartilage explants. J Orthop Res. 1994;12(2):151–60. https://doi.org/10.1002/jor.1100120202.

    Article  CAS  Google Scholar 

  181. Nogami H, Aoki H, Okagawa T, Mimatsu K. Effects of electric current on chondrogenesis in vitro. Clin Orthop Relat Res. 1982;163:243–7.

    Google Scholar 

  182. Chao PH, Roy R, Mauck RL, Liu W, Valhmu WB, Hung CT. Chondrocyte translocation response to direct current electric fields. J Biomech Eng. 2000;122(3):261–7.

    Article  CAS  Google Scholar 

  183. Gunja NJ, Dujari D, Chen A, Luengo A, Fong JV, Hung CT. Migration responses of outer and inner meniscus cells to applied direct current electric fields. J Orthop Res. 2012;30(1):103–11. https://doi.org/10.1002/jor.21489.

    Article  CAS  Google Scholar 

  184. Rodan GA, Bourret LA, Norton LA. DNA synthesis in cartilage cells is stimulated by oscillating electric fields. Science. 1978;199(4329):690–2.

    Article  CAS  Google Scholar 

  185. Wang W, Wang Z, Zhang G, Clark CC, Brighton CT. Up-regulation of chondrocyte matrix genes and products by electric fields. Clin Orthop Relat Res 2004(427 Suppl):S163–73.

    Article  Google Scholar 

  186. Brighton CT, Wang W, Clark CC. Up-regulation of matrix in bovine articular cartilage explants by electric fields. Biochem Biophys Res Commun. 2006;342(2):556–61. https://doi.org/10.1016/j.bbrc.2006.01.171.

    Article  CAS  Google Scholar 

  187. Brighton CT, Wang W, Clark CC. The effect of electrical fields on gene and protein expression in human osteoarthritic cartilage explants. J Bone Joint Surg Am. 2008;90(4):833–48. https://doi.org/10.2106/JBJS.F.01437.

    Article  Google Scholar 

  188. Varani K, De Mattei M, Vincenzi F, Gessi S, Merighi S, Pellati A, et al. Characterization of adenosine receptors in bovine chondrocytes and fibroblast-like synoviocytes exposed to low frequency low energy pulsed electromagnetic fields. Osteoarthr Cartil. 2008;16(3):292–304. https://doi.org/10.1016/j.joca.2007.07.004.

    Article  CAS  Google Scholar 

  189. Tesch AM, MacDonald MH, Kollias-Baker C, Benton HP. Chondrocytes respond to adenosine via A(2)receptors and activity is potentiated by an adenosine deaminase inhibitor and a phosphodiesterase inhibitor. Osteoarthr Cartil. 2002;10(1):34–43. https://doi.org/10.1053/joca.2001.0479.

    Article  CAS  Google Scholar 

  190. Xu J, Wang W, Clark CC, Brighton CT. Signal transduction in electrically stimulated articular chondrocytes involves translocation of extracellular calcium through voltage-gated channels. Osteoarthr Cartil. 2009;17(3):397–405. https://doi.org/10.1016/j.joca.2008.07.001.

    Article  CAS  Google Scholar 

  191. Fitzsimmons RJ, Gordon SL, Kronberg J, Ganey T, Pilla AA. A pulsing electric field (PEF) increases human chondrocyte proliferation through a transduction pathway involving nitric oxide signaling. J Orthop Res. 2008;26(6):854–9. https://doi.org/10.1002/jor.20590.

    Article  Google Scholar 

  192. Dini L, Abbro L. Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron. 2005;36(3):195–217. https://doi.org/10.1016/j.micron.2004.12.009.

    Article  Google Scholar 

  193. Brady MA, Waldman SD, Ethier CR. The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part I: cellular response. Tissue Eng Part B Rev. 2015;21(1):1–19. https://doi.org/10.1089/ten.TEB.2013.0757.

    Article  Google Scholar 

  194. Stolfa S, Skorvanek M, Stolfa P, Rosocha J, Vasko G, Sabo J. Effects of static magnetic field and pulsed electromagnetic field on viability of human chondrocytes in vitro. Physiol Res. 2007;56(Suppl 1):S45–9.

    Google Scholar 

  195. Amin HD, Brady MA, St-Pierre JP, Stevens MM, Overby DR, Ethier CR. Stimulation of chondrogenic differentiation of adult human bone marrow-derived stromal cells by a moderate-strength static magnetic field. Tissue Eng Part A. 2014;20(11–12):1612–20. https://doi.org/10.1089/ten.tea.2013.0307.

    Article  CAS  Google Scholar 

  196. Trock DH, Bollet AJ, Dyer RH Jr, Fielding LP, Miner WK, Markoll R. A double-blind trial of the clinical effects of pulsed electromagnetic fields in osteoarthritis. J Rheumatol. 1993;20(3):456–60.

    CAS  Google Scholar 

  197. Vavken P, Arrich F, Schuhfried O, Dorotka R. Effectiveness of pulsed electromagnetic field therapy in the management of osteoarthritis of the knee: a meta-analysis of randomized controlled trials. J Rehabil Med. 2009;41(6):406–11. https://doi.org/10.2340/16501977-0374.

    Article  Google Scholar 

  198. Sakai A, Suzuki K, Nakamura T, Norimura T, Tsuchiya T. Effects of pulsing electromagnetic fields on cultured cartilage cells. Int Orthop. 1991;15(4):341–6.

    Article  CAS  Google Scholar 

  199. Pezzetti F, De Mattei M, Caruso A, Cadossi R, Zucchini P, Carinci F, et al. Effects of pulsed electromagnetic fields on human chondrocytes: an in vitro study. Calcif Tissue Int. 1999;65(5):396–401.

    Article  CAS  Google Scholar 

  200. De Mattei M, Caruso A, Pezzetti F, Pellati A, Stabellini G, Sollazzo V, et al. Effects of pulsed electromagnetic fields on human articular chondrocyte proliferation. Connect Tissue Res. 2001;42(4):269–79.

    Article  Google Scholar 

  201. De Mattei M, Pasello M, Pellati A, Stabellini G, Massari L, Gemmati D, et al. Effects of electromagnetic fields on proteoglycan metabolism of bovine articular cartilage explants. Connect Tissue Res. 2003;44(3–4):154–9.

    Article  Google Scholar 

  202. De Mattei M, Pellati A, Pasello M, Ongaro A, Setti S, Massari L, et al. Effects of physical stimulation with electromagnetic field and insulin growth factor-I treatment on proteoglycan synthesis of bovine articular cartilage. Osteoarthr Cartil. 2004;12(10):793–800. https://doi.org/10.1016/j.joca.2004.06.012.

    Article  Google Scholar 

  203. Bobacz K, Graninger WB, Amoyo L, Smolen JS. Effect of pulsed electromagnetic fields on proteoglycan biosynthesis of articular cartilage is age dependent. Ann Rheum Dis. 2006;65(7):949–51. https://doi.org/10.1136/ard.2005.037622.

    Article  CAS  Google Scholar 

  204. Chang SH, Hsiao YW, Lin HY. Low-frequency electromagnetic field exposure accelerates chondrocytic phenotype expression on chitosan substrate. Orthopedics. 2011;34(1):20. https://doi.org/10.3928/01477447-20101123-10.

    Article  CAS  Google Scholar 

  205. Ongaro A, Pellati A, Masieri FF, Caruso A, Setti S, Cadossi R, et al. Chondroprotective effects of pulsed electromagnetic fields on human cartilage explants. Bioelectromagnetics. 2011;32(7):543–51. https://doi.org/10.1002/bem.20663.

    Article  CAS  Google Scholar 

  206. Mayer-Wagner S, Passberger A, Sievers B, Aigner J, Summer B, Schiergens TS, et al. Effects of low frequency electromagnetic fields on the chondrogenic differentiation of human mesenchymal stem cells. Bioelectromagnetics. 2011;32(4):283–90. https://doi.org/10.1002/bem.20633.

    Article  CAS  Google Scholar 

  207. Chen CH, Lin YS, Fu YC, Wang CK, Wu SC, Wang GJ, et al. Electromagnetic fields enhance chondrogenesis of human adipose-derived stem cells in a chondrogenic microenvironment in vitro. J Appl Physiol (1985). 2013;114(5):647–55. https://doi.org/10.1152/japplphysiol.01216.2012.

    Article  CAS  Google Scholar 

  208. Levin M. Bioelectromagnetics in morphogenesis. Bioelectromagnetics. 2003;24(5):295–315. https://doi.org/10.1002/bem.10104.

    Article  Google Scholar 

  209. Robinson KR, Messerli MA. Left/right, up/down: the role of endogenous electrical fields as directional signals in development, repair and invasion. BioEssays. 2003;25(8):759–66. https://doi.org/10.1002/bies.10307.

    Article  Google Scholar 

  210. Lippiello L, Chakkalakal D, Connolly JF. Pulsing direct current-induced repair of articular cartilage in rabbit osteochondral defects. J Orthop Res. 1990;8(2):266–75. https://doi.org/10.1002/jor.1100080216.

    Article  CAS  Google Scholar 

  211. Brady MA, Waldman SD, Ethier CR. The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part II: signal transduction. Tissue Eng Part B Rev. 2015;21(1):20–33. https://doi.org/10.1089/ten.TEB.2013.0760.

    Article  Google Scholar 

  212. Hsieh CH, Lee MC, Tsai-Wu JJ, Chen MH, Lee HS, Chiang H, et al. Deleterious effects of MRI on chondrocytes. Osteoarthr Cartil. 2008;16(3):343–51. https://doi.org/10.1016/j.joca.2007.07.001.

    Article  Google Scholar 

  213. Varani K, Vincenzi F, Tosi A, Targa M, Masieri FF, Ongaro A, et al. Expression and functional role of adenosine receptors in regulating inflammatory responses in human synoviocytes. Br J Pharmacol. 2010;160(1):101–15. https://doi.org/10.1111/j.1476-5381.2010.00667.x.

    Article  CAS  Google Scholar 

  214. Cook SD, Salkeld SL, Popich-Patron LS, Ryaby JP, Jones DG, Barrack RL. Improved cartilage repair after treatment with low-intensity pulsed ultrasound. Clin Orthop Relat Res 2001(391 Suppl):S231–43.

    Article  Google Scholar 

  215. Min BH, Choi BH, Park SR. Low intensity ultrasound as a supporter of cartilage regeneration and its engineering. Biotechnol Bioproc E. 2007;12(1):22–31. https://doi.org/10.1007/Bf02931799.

    Article  CAS  Google Scholar 

  216. Parvizi J, Wu CC, Lewallen DG, Greenleaf JF, Bolander ME. Low-intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by increasing aggrecan gene expression. J Orthop Res. 1999;17(4):488–94. https://doi.org/10.1002/jor.1100170405.

    Article  CAS  Google Scholar 

  217. Zhang ZJ, Huckle J, Francomano CA, Spencer RG. The effects of pulsed low-intensity ultrasound on chondrocyte viability, proliferation, gene expression and matrix production. Ultrasound Med Biol. 2003;29(11):1645–51.

    Article  Google Scholar 

  218. Nishikori T, Ochi M, Uchio Y, Maniwa S, Kataoka H, Kawasaki K, et al. Effects of low-intensity pulsed ultrasound on proliferation and chondroitin sulfate synthesis of cultured chondrocytes embedded in Atelocollagen gel. J Biomed Mater Res. 2002;59(2):201–6.

    Article  CAS  Google Scholar 

  219. Yang KH, Parvizi J, Wang SJ, Lewallen DG, Kinnick RR, Greenleaf JF, et al. Exposure to low-intensity ultrasound increases aggrecan gene expression in a rat femur fracture model. J Orthop Res. 1996;14(5):802–9. https://doi.org/10.1002/jor.1100140518.

    Article  CAS  Google Scholar 

  220. Zhang Z, Huckle J, Francomano CA, Spencer RG. The influence of pulsed low-intensity ultrasound on matrix production of chondrocytes at different stages of differentiation: an explant study. Ultrasound Med Biol. 2002;28(11–12):1547–53.

    Article  Google Scholar 

  221. Huang MH, Ding HJ, Chai CY, Huang YF, Yang RC. Effects of sonication on articular cartilage in experimental osteoarthritis. J Rheumatol. 1997;24(10):1978–84.

    CAS  Google Scholar 

  222. Choi BH, Woo JI, Min BH, Park SR. Low-intensity ultrasound stimulates the viability and matrix gene expression of human articular chondrocytes in alginate bead culture. J Biomed Mater Res A. 2006;79((4):858–64. https://doi.org/10.1002/jbm.a.30816.

    Article  CAS  Google Scholar 

  223. Park SR, Park SH, Jang KW, Cho HS, Cui JH, An HJ, et al. The effect of sonication on simulated osteoarthritis. Part II: alleviation of osteoarthritis pathogenesis by 1 MHz ultrasound with simultaneous hyaluronate injection. Ultrasound Med Biol. 2005;31(11):1559–66. https://doi.org/10.1016/j.ultrasmedbio.2005.07.001.

    Article  Google Scholar 

  224. Lee HJ, Choi BH, Min BH, Son YS, Park SR. Low-intensity ultrasound stimulation enhances chondrogenic differentiation in alginate culture of mesenchymal stem cells. Artif Organs. 2006;30(9):707–15. https://doi.org/10.1111/j.1525-1594.2006.00288.x.

    Article  CAS  Google Scholar 

  225. Schumann D, Kujat R, Zellner J, Angele MK, Nerlich M, Mayr E, et al. Treatment of human mesenchymal stem cells with pulsed low intensity ultrasound enhances the chondrogenic phenotype in vitro. Biorheology. 2006;43(3,4):431–43.

    CAS  Google Scholar 

  226. Cui JH, Park SR, Park K, Choi BH, Min BH. Preconditioning of mesenchymal stem cells with low-intensity ultrasound for cartilage formation in vivo. Tissue Eng. 2007;13(2):351–60. https://doi.org/10.1089/ten.2006.0080.

    Article  CAS  Google Scholar 

  227. Cui JH, Park K, Park SR, Min BH. Effects of low-intensity ultrasound on chondrogenic differentiation of mesenchymal stem cells embedded in polyglycolic acid: an in vivo study. Tissue Eng. 2006;12(1):75–82. https://doi.org/10.1089/ten.2006.12.75.

    Article  CAS  Google Scholar 

  228. Ebisawa K, Hata K, Okada K, Kimata K, Ueda M, Torii S, et al. Ultrasound enhances transforming growth factor beta-mediated chondrocyte differentiation of human mesenchymal stem cells. Tissue Eng. 2004;10(5–6):921–9. https://doi.org/10.1089/1076327041348437.

    Article  CAS  Google Scholar 

  229. Lai CH, Chen SC, Chiu LH, Yang CB, Tsai YH, Zuo CS, et al. Effects of low-intensity pulsed ultrasound, dexamethasone/TGF-beta1 and/or BMP-2 on the transcriptional expression of genes in human mesenchymal stem cells: chondrogenic vs. osteogenic differentiation. Ultrasound Med Biol. 2010;36(6):1022–33. https://doi.org/10.1016/j.ultrasmedbio.2010.03.014.

    Article  Google Scholar 

  230. Takeuchi R, Ryo A, Komitsu N, Mikuni-Takagaki Y, Fukui A, Takagi Y, et al. Low-intensity pulsed ultrasound activates the phosphatidylinositol 3 kinase/Akt pathway and stimulates the growth of chondrocytes in three-dimensional cultures: a basic science study. Arthritis Res Ther. 2008;10(4):R77. https://doi.org/10.1186/ar2451.

    Article  CAS  Google Scholar 

  231. Mukai S, Ito H, Nakagawa Y, Akiyama H, Miyamoto M, Nakamura T. Transforming growth factor-beta1 mediates the effects of low-intensity pulsed ultrasound in chondrocytes. Ultrasound Med Biol. 2005;31(12):1713–21. https://doi.org/10.1016/j.ultrasmedbio.2005.07.012.

    Article  Google Scholar 

  232. Whitney NP, Lamb AC, Louw TM, Subramanian A. Integrin-mediated mechanotransduction pathway of low-intensity continuous ultrasound in human chondrocytes. Ultrasound Med Biol. 2012;38(10):1734–43. https://doi.org/10.1016/j.ultrasmedbio.2012.06.002.

    Article  Google Scholar 

  233. Wang CJ, Weng LH, Ko JY, Sun YC, Yang YJ, Wang FS. Extracorporeal shockwave therapy shows chondroprotective effects in osteoarthritic rat knee. Arch Orthop Traum Su. 2011;131(8):1153–8. https://doi.org/10.1007/s00402-011-1289-2.

    Article  Google Scholar 

  234. Wang CJ, Hsu SL, Weng LH, Sun YC, Wang FS. Extracorporeal shockwave therapy shows a number of treatment related chondroprotective effect in osteoarthritis of the knee in rats. BMC Musculoskel Dis. 2013;14. doi:Artn 44. https://doi.org/10.1186/1471-2474-14-44.

  235. Wang CJ, Sun YC, Wong T, Hsu SL, Chou WY, Chang HW. Extracorporeal shockwave therapy shows time-dependent chondroprotective effects in osteoarthritis of the knee in rats. J Surg Res. 2012;178(1):196–205. https://doi.org/10.1016/j.jss.2012.01.010.

    Article  Google Scholar 

  236. Moretti B, Iannone F, Notarnicola A, Lapadula G, Moretti L, Patella V et al. Extracorporeal shock waves down-regulate the expression of interleukin-10 and tumor necrosis factor-alpha in osteoarthritic chondrocytes. BMC Musculoskel Dis. 2008;9. doi:Artn 16 https://doi.org/10.1186/1471-2474-9-16.

  237. Wang P, Liu C, Yang XT, Wei XF, Zhou YJ, Yang L, et al. Effect of extracorporeal shock wave therapy on cartilage and subchondral bone remodeling in rabbits with ACLT-induced osteoarthritis. Sichuan Da Xue Xue Bao Yi Xue Ban. 2014;45(1):120–5.

    Google Scholar 

  238. Zhao Z, Ji H, Jing R, Liu C, Wang M, Zhai L, et al. Extracorporeal shock-wave therapy reduces progression of knee osteoarthritis in rabbits by reducing nitric oxide level and chondrocyte apoptosis. Arch Orthop Trauma Surg. 2012;132(11):1547–53. https://doi.org/10.1007/s00402-012-1586-4.

    Article  Google Scholar 

  239. Wang CJ, Hsu SL, Weng LH, Sun YC, Wang FS. Extracorporeal shockwave therapy shows a number of treatment related chondroprotective effect in osteoarthritis of the knee in rats. BMC Musculoskelet Disord. 2013;14:44. https://doi.org/10.1186/1471-2474-14-44.

    Article  Google Scholar 

  240. Lyon R, Liu XC, Kubin M, Schwab J. Does extracorporeal shock wave therapy enhance healing of osteochondritis dissecans of the rabbit knee?: a pilot study. Clin Orthop Relat Res. 2013;471(4):1159–65. https://doi.org/10.1007/s11999-012-2410-8.

    Article  Google Scholar 

  241. Chen TW, Lin CW, Lee CL, Chen CH, Chen YJ, Lin TY, et al. The efficacy of shock wave therapy in patients with knee osteoarthritis and popliteal cyamella. Kaohsiung J Med Sci. 2014;30(7):362–70. https://doi.org/10.1016/j.kjms.2014.03.006.

    Article  Google Scholar 

  242. Zhao Z, Jing R, Shi Z, Zhao B, Ai Q, Xing G. Efficacy of extracorporeal shockwave therapy for knee osteoarthritis: a randomized controlled trial. J Surg Res. 2013;185(2):661–6. https://doi.org/10.1016/j.jss.2013.07.004.

    Article  Google Scholar 

  243. Frairia R, Berta L. Biological effects of extracorporeal shock waves on fibroblasts. A review. Muscles Ligaments Tendons J. 2011;1(4):138–47.

    Google Scholar 

  244. Chen J, Li CH, Wang SH. Periodic heat shock accelerated the chondrogenic differentiation of human mesenchymal stem cells in pellet culture. PLoS One. 2014;9(3):e91561. https://doi.org/10.1371/journal.pone.0091561.

    Article  CAS  Google Scholar 

  245. Mangueira NM, Xavier M, de Souza RA, Salgado MA, Silveira L Jr, Villaverde AB. Effect of low-level laser therapy in an experimental model of osteoarthritis in rats evaluated through Raman spectroscopy. Photomed Laser Surg. 2015;33(3):145–53. https://doi.org/10.1089/pho.2014.3744.

    Article  CAS  Google Scholar 

  246. Goldshmid R, Cohen S, Shachaf Y, Kupershmit I, Sarig-Nadir O, Seliktar D, et al. Steric interference of adhesion supports in-vitro chondrogenesis of mesenchymal stem cells on hydrogels for cartilage repair. Sci Rep. 2015;5:12607. https://doi.org/10.1038/srep12607.

    Article  CAS  Google Scholar 

  247. Rai V, Dilisio MF, Dietz NE, Agrawal DK. Recent strategies in cartilage repair: a systemic review of the scaffold development and tissue engineering. J Biomed Mater Res A. 2017;105(8):2343–54. https://doi.org/10.1002/jbm.a.36087.

    Article  CAS  Google Scholar 

  248. Khan IM, Gilbert SJ, Singhrao SK, Duance VC, Archer CW. Cartilage integration: evaluation of the reasons for failure of integration during cartilage repair. A review. Eur Cell Mater. 2008;16:26–39.

    Article  CAS  Google Scholar 

  249. Kang KS, Lee SJ, Lee HS, Moon W, Cho DW. Effects of combined mechanical stimulation on the proliferation and differentiation of pre-osteoblasts. Exp Mol Med. 2011;43(6):367–73. https://doi.org/10.3858/emm.2011.43.6.040.

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank NIH for the research support (1R21EB024787).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh Duc Nguyen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Das, R., Patel, A. et al. Physical Stimulations for Bone and Cartilage Regeneration. Regen. Eng. Transl. Med. 4, 216–237 (2018). https://doi.org/10.1007/s40883-018-0064-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-018-0064-0

Keywords

Navigation