[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

FEM and ANN approaches to wind turbine gearbox monitoring and diagnosis: a mini review

  • Review
  • Published:
Journal of Reliable Intelligent Environments Aims and scope Submit manuscript

Abstract

Condition monitoring (CM) of wind turbine gearbox is one of the key concerns for the reliable operation of wind power generation. With the huge ongoing transition towards renewable energies globally, necessary studies are needed to ameliorate this problem in the wind energy industry. Recent developments in CM of wind turbine gearbox towards improving the system lifecycle have necessitated in-silico modelling, which is cost-efficient and saves time. These developments involve applying vibration analysis through gear fault modelling and dynamic simulations coupled with signal processing or machine learning methods for an efficacious CM system. The finite element method (FEM) is an efficient tool that has been utilized in different studies for structural analysis and failure investigations of this unreliable system. Also, machine learning techniques like the artificial neural networks (ANN) model has been utilized for intelligent fault prediction and classification. This study, therefore, presents the state of research in the use of these computational tools in the CM of wind turbine gearbox. The level of correctness of diverse FEM analyses and different ANN variants utilized in literature were recorded. From our findings, the FEM approach produced accurate results with very minimal deviation from traditional methods of experiments. The ANN approach, which can perform feature extraction and feature learning directly from raw data eliminating the need for conventional extraction methods, also offered high prediction and classification accuracies. Also, hybrid ANN models were more effective in fault diagnosis than the standalone models. Finally, based on their notable accuracies, future research direction synergizing both approaches for intelligent fault diagnosis was presented for improved monitoring and diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Nazir MS, Mahdi AJ, Bilal M et al (2019) Environmental impact and pollution-related challenges of renewable wind energy paradigm—a review. Sci Total Environ 683:436–444

    Article  Google Scholar 

  2. Lee J, Zhao F (2021) Global Wind Report 2021. In: Global Wind Energy Council

  3. IRENA (2021) Renewable Energy Statistics 2021 Statistiques D’ Énergie Renouvelable 2021 Estadísticas De Energía

  4. IRENA (2021) World energy transitions outlook

  5. Sheng S (2014) Gearbox reliability database: yesterday, today, and tomorrow. In: Wind turbine tribology seminar

  6. Spinato F, Tavner PJ, Van Bussel GJW, Koutoulakos E (2009) Reliability of wind turbine subassemblies. IET Renew Power Gener 3:387–401. https://doi.org/10.1049/iet-rpg.2008.0060

    Article  Google Scholar 

  7. Feng Y, Qiu Y, Crabtree CJ et al (2013) Monitoring wind turbine gearboxes. Wind Energy 16:728–740

    Article  Google Scholar 

  8. Carroll J, McDonald A, McMillan D (2016) Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines. Wind Energy 19:1107–1119. https://doi.org/10.1002/we.1887

    Article  Google Scholar 

  9. Zhao M, Ji J (2016) Dynamic analysis of wind turbine gearbox components. Energies 9:1–18. https://doi.org/10.3390/en9020110

    Article  Google Scholar 

  10. Mohammed OD, Rantatalo M (2020) Gear fault models and dynamics-based modelling for gear fault detection—a review. Eng Fail Anal 117:104798. https://doi.org/10.1016/J.ENGFAILANAL.2020.104798

    Article  Google Scholar 

  11. Gao Z, Liu X (2021) An overview on fault diagnosis, prognosis and resilient control for wind turbine systems. Processes. https://doi.org/10.3390/pr9020300

    Article  Google Scholar 

  12. Rashid H, Khalaji E, Rasheed J, Batunlu C (2020) Fault prediction of wind turbine gearbox based on SCADA data and machine learning. In: 10th int conf adv comput inf technol ACIT 2020—Proc, pp 391–395. https://doi.org/10.1109/ACIT49673.2020.9208884

  13. Li C, Sánchez R-V, Zurita G et al (2016) Fault diagnosis for rotating machinery using vibration measurement deep statistical feature learning. Sensors. https://doi.org/10.3390/s16060895

    Article  Google Scholar 

  14. Vamsi I, Sabareesh GR, Penumakala PK (2019) Comparison of condition monitoring techniques in assessing fault severity for a wind turbine gearbox under non-stationary loading. Mech Syst Signal Process 124:1–20. https://doi.org/10.1016/j.ymssp.2019.01.038

    Article  Google Scholar 

  15. Jia S, Howard I (2006) Comparison of localised spalling and crack damage from dynamic modelling of spur gear vibrations. Mech Syst Signal Process 20:332–349. https://doi.org/10.1016/J.YMSSP.2005.02.009

    Article  Google Scholar 

  16. Mohammed OD, Rantatalo M, Aidanpää JO (2013) Improving mesh stiffness calculation of cracked gears for the purpose of vibration-based fault analysis. Eng Fail Anal 34:235–251. https://doi.org/10.1016/J.ENGFAILANAL.2013.08.008

    Article  Google Scholar 

  17. Li Z, Ma H, Feng M et al (2017) Meshing characteristics of spur gear pair under different crack types. Eng Fail Anal. https://doi.org/10.1016/j.engfailanal.2017.06.012

    Article  Google Scholar 

  18. Ma H, Song R, Pang X, Wen B (2014) Time-varying mesh stiffness calculation of cracked spur gears. Eng Fail Anal 44:179–194. https://doi.org/10.1016/j.engfailanal.2014.05.018

    Article  Google Scholar 

  19. Yang L, Wang L, Yu W, Shao Y (2021) Investigation of tooth crack opening state on time varying meshing stiffness and dynamic response of spur gear pair. Eng Fail Anal 121:105181. https://doi.org/10.1016/j.engfailanal.2020.105181

    Article  Google Scholar 

  20. Ma H, Pang X, Zeng J et al (2015) Effects of gear crack propagation paths on vibration responses of the perforated gear system. Mech Syst Signal Process 62–63:113–128. https://doi.org/10.1016/J.YMSSP.2015.03.008

    Article  Google Scholar 

  21. Luo Y, Cui L, Ma J (2020) An improved phenomenological model of the planetary gearbox based on meshing vibration characteristics. IEEE Access 8:103462–103475. https://doi.org/10.1109/ACCESS.2020.2998534

    Article  Google Scholar 

  22. Acuilingli LC, Zhang J, Luo Y et al (2021) Vibration mechanism and improved phenomenological model of the planetary gearbox with broken ring gear fault. J Mech Sci Technol 35:1867–1879. https://doi.org/10.1007/s12206-021-0406-6

    Article  Google Scholar 

  23. Molina Vicuña C (2012) Theoretical frequency analysis of vibrations from planetary gearboxes. Forsch Ingenieurwes 76:15–31. https://doi.org/10.1007/s10010-012-0151-1

    Article  Google Scholar 

  24. Inalpolat M, Kahraman A (2009) A theoretical and experimental investigation of modulation sidebands of planetary gear sets. J Sound Vib 323:677–696. https://doi.org/10.1016/J.JSV.2009.01.004

    Article  Google Scholar 

  25. Hong L, Dhupia JS, Sheng S (2014) An explanation of frequency features enabling detection of faults in equally spaced planetary gearbox. Mech Mach Theory 73:169–183. https://doi.org/10.1016/J.MECHMACHTHEORY.2013.10.014

    Article  Google Scholar 

  26. Han L, Qi H (2019) Dynamics responses analysis in frequency domain of helical gear pair under multi-fault conditions. J Mech Sci Technol 3311(33):5117–5127. https://doi.org/10.1007/S12206-019-1001-Y

    Article  Google Scholar 

  27. Mohamed AS, Sassi S, Paurobally MR (2018) Model-based analysis of spur gears’ dynamic behavior in the presence of multiple cracks. Shock Vib. https://doi.org/10.1155/2018/1913289

    Article  Google Scholar 

  28. Liu L, Liang X, Zuo MJ (2016) Vibration signal modeling of a planetary gear set with transmission path effect analysis. Measurement. https://doi.org/10.1016/j.measurement.2016.02.006

    Article  Google Scholar 

  29. Ericson TM, Parker RG (2013) Planetary gear modal vibration experiments and correlation against lumped-parameter and finite element models. J Sound Vib 332:2350–2375. https://doi.org/10.1016/j.jsv.2012.11.004

    Article  Google Scholar 

  30. Xue S, Howard I (2018) Torsional vibration signal analysis as a diagnostic tool for planetary gear fault detection. Mech Syst Signal Process 100:706–728. https://doi.org/10.1016/J.YMSSP.2017.07.038

    Article  Google Scholar 

  31. Grunwald B (2018) Vibration analysis of shaft in solid works and ANSYS. 53

  32. Cho J-R, Jeong K-Y, Park M-H et al (2013) Finite element structural analysis of wind turbine gearbox considering tooth contact of internal gear system. J Mech Sci Technol 277(27):2053–2059. https://doi.org/10.1007/S12206-013-0521-0

    Article  Google Scholar 

  33. Mohsine A, Boudi EM, El Marjani A (2017) Modeling and structural analysis of planetary gear of a wind turbine. In: Proc 2016 int renew sustain energy conf IRSEC 2016, pp 462–466. https://doi.org/10.1109/IRSEC.2016.7984039

  34. Dong S, Luan Z, Ma C (2019) Finite element analysis of single pair gear tooth root crack. J Eng 2019:9166–9169. https://doi.org/10.1049/JOE.2018.9209

    Article  Google Scholar 

  35. Al-Tameemi HA, Long H (2020) Finite element simulation of subsurface initiated damage from non-metallic inclusions in wind turbine gearbox bearings. Int J Fatigue 131:105347. https://doi.org/10.1016/j.ijfatigue.2019.105347

    Article  Google Scholar 

  36. Saifullah MSDHK, Ishak MTKSI, Mohd Sofian MR et al (2009) A study of vibration analysis for gearbox casing using finite element analysis. In: Proc int conf appl des mech eng, pp 11–13

  37. Lin T, Ou H, Li R (2007) A finite element method for 3D static and dynamic contact/impact analysis of gear drives. Comput Methods Appl Mech Eng 196:1716–1728. https://doi.org/10.1016/J.CMA.2006.09.014

    Article  MATH  Google Scholar 

  38. Chen Y, Zhu R, Jin G, Xiong Y (2017) Tooth fracture detection in spiral bevel gears system by harmonic response based on finite element method. J Control Sci Eng. https://doi.org/10.1155/2017/3169172

    Article  MATH  Google Scholar 

  39. Wan Z, Dou Y, Guan Y et al (2020) Dynamic modeling of gear system based on 3d finite element model and its application in spalling fault analysis. Math Probl Eng. https://doi.org/10.1155/2020/2859310

    Article  Google Scholar 

  40. Mohsine A, El Mostapha B, El Marjani A (2018) Investigation of structural and modal analysis of a wind turbine planetary gear using finite element method. Int J Renew Energy Res 8:752–760

    Google Scholar 

  41. Concli F, Cortese L, Vidoni R et al (2018) A mixed FEM and lumped-parameter dynamic model for evaluating the modal properties of planetary gearboxes. J Mech Sci Technol 32:3047–3056. https://doi.org/10.1007/s12206-018-0607-9

    Article  Google Scholar 

  42. Concli F, Kolios A (2021) Preliminary evaluation of the influence of surface and tooth root damage on the stress and strain state of a planetary gearbox: an innovative hybrid numerical-analytical approach for further development of structural health monitoring models. Computation. https://doi.org/10.3390/computation9030038

    Article  Google Scholar 

  43. Tchakoua P, Wamkeue R, Ouhrouche M et al (2014) Wind turbine condition monitoring: state-of-the-art review, new trends, and future challenges. Energies 7:2595–2630. https://doi.org/10.3390/en7042595

    Article  Google Scholar 

  44. Singh A, Thakur N, Sharma A (2016) A review of supervised machine learning algorithms. In: Proc 10th INDIACom; 2016 3rd int conf comput sustain glob dev INDIACom 2016, pp 1310–1315

  45. Wuest T, Weimer D, Irgens C, Thoben K-D (2016) Machine learning in manufacturing: advantages, challenges, and applications. Prod Manuf Res 4:23–45. https://doi.org/10.1080/21693277.2016.1192517

    Article  Google Scholar 

  46. Lee J, Wu F, Zhao W et al (2014) Prognostics and health management design for rotary machinery systems—reviews, methodology and applications. Mech Syst Signal Process 42:314–334. https://doi.org/10.1016/j.ymssp.2013.06.004

    Article  Google Scholar 

  47. Yang S, Li W, Wang C (2008) The intelligent fault diagnosis of wind turbine gearbox based on artificial neural network. In: 2008 international conference on condition monitoring and diagnosis, pp 1327–1330

  48. Janssens O, Slavkovikj V, Vervisch B et al (2016) Convolutional neural network based fault detection for rotating machinery. J Sound Vib 377:331–345. https://doi.org/10.1016/j.jsv.2016.05.027

    Article  Google Scholar 

  49. Cao L, Zhang J, Wang J, Qian Z (2019) Intelligent fault diagnosis of wind turbine gearbox based on Long short-term memory networks. In: IEEE int symp ind electron 2019-June, pp 890–895. https://doi.org/10.1109/ISIE.2019.8781108

  50. Hizarci B, Ümütlü RC, Ozturk H, Kıral Z (2019) Vibration region analysis for condition monitoring of gearboxes using image processing and neural networks. Exp Tech 43:739–755. https://doi.org/10.1007/s40799-019-00329-9

    Article  Google Scholar 

  51. Huang T, Zhang Q, Tang X et al (2021) A novel fault diagnosis method based on CNN and LSTM and its application in fault diagnosis for complex systems. Artif Intell Rev. https://doi.org/10.1007/s10462-021-09993-z

    Article  Google Scholar 

  52. García Márquez FP, Tobias AM, Pinar Pérez JM, Papaelias M (2012) Condition monitoring of wind turbines: techniques and methods. Renew Energy 46:169–178. https://doi.org/10.1016/J.RENENE.2012.03.003

    Article  Google Scholar 

  53. Salameh JP, Cauet S, Etien E et al (2018) Gearbox condition monitoring in wind turbines: a review. Mech Syst Signal Process 111:251–264. https://doi.org/10.1016/J.YMSSP.2018.03.052

    Article  Google Scholar 

  54. Sharma V (2021) A review on vibration-based fault diagnosis techniques for wind turbine gearboxes operating under nonstationary conditions. J Inst Eng Ser C 102:507–523. https://doi.org/10.1007/S40032-021-00666-Y/FIGURES/6

    Article  Google Scholar 

  55. Nie M, Wang L (2013) Review of condition monitoring and fault diagnosis technologies for wind turbine gearbox. Proc CIRP 11:287–290. https://doi.org/10.1016/J.PROCIR.2013.07.018

    Article  Google Scholar 

  56. Wang T, Han Q, Chu F, Feng Z (2019) Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: a review. Mech Syst Signal Process 126:662–685. https://doi.org/10.1016/J.YMSSP.2019.02.051

    Article  Google Scholar 

  57. Aherwar A, Khalid MS (2012) Vibration analysis techniques for gearbox diagnostic: a review. Int J Adv Eng Technol 3(2):04–12

    Google Scholar 

  58. Zhang X, Wang L, Miao Q (2017) Fault diagnosis techniques for planetary gearboxes under variable conditions: a review. In: Proc 2016 progn syst heal manag conf PHM-Chengdu 2016. https://doi.org/10.1109/PHM.2016.7819889

  59. Gu H, Liu W, Gao Q, Zhang Y (2021) A review on wind turbines gearbox fault diagnosis methods. J Vibroeng 23:26–43. https://doi.org/10.21595/jve.2020.20178

    Article  Google Scholar 

  60. Stetco A, Dinmohammadi F, Zhao X et al (2019) Machine learning methods for wind turbine condition monitoring: a review. Renew Energy 133:620–635. https://doi.org/10.1016/J.RENENE.2018.10.047

    Article  Google Scholar 

  61. Liu R, Yang B, Zio E, Chen X (2018) Artificial intelligence for fault diagnosis of rotating machinery: a review. Mech Syst Signal Process 108:33–47. https://doi.org/10.1016/J.YMSSP.2018.02.016

    Article  Google Scholar 

  62. Jia F, Lei Y, Lin J et al (2016) Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech Syst Signal Process 72–73:303–315. https://doi.org/10.1016/J.YMSSP.2015.10.025

    Article  Google Scholar 

  63. Márquez FPG, Pérez JMP, Marugán AP, Papaelias M (2016) Identification of critical components of wind turbines using FTA over the time. Renew Energy 87:869–883. https://doi.org/10.1016/j.renene.2015.09.038

    Article  Google Scholar 

  64. Tazi N, Châtelet E, Bouzidi Y (2017) Using a hybrid cost-FMEA analysis for wind turbine reliability analysis. Energies 10:276. https://doi.org/10.3390/EN10030276

    Article  Google Scholar 

  65. Bhattacharjee S (2021) Wind power technology. Sustain. Fuel Technol. Handb., pp 123–170

  66. van de Kaa G, van Ek M, Kamp LM, Rezaei J (2020) Wind turbine technology battles: gearbox versus direct drive—opening up the black box of technology characteristics. Technol Forecast Soc Change 153:119933. https://doi.org/10.1016/j.techfore.2020.119933

    Article  Google Scholar 

  67. Kordestani M, Rezamand M, Orchard M et al (2020) Planetary gear faults detection in wind turbine gearbox based on a ten years historical data from three wind farms. IFAC-PapersOnLine 53:10318–10323. https://doi.org/10.1016/j.ifacol.2020.12.2767

    Article  Google Scholar 

  68. Ukonsaari J, Bennstedt N (2016) Wind turbine gearboxes maintenance effect on present and future gearboxes for wind turbines

  69. Ghane M, Nejad AR, Blanke M et al (2016) Statistical fault diagnosis of wind turbine drivetrain applied to a 5MW floating wind turbine. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/753/5/052017

    Article  Google Scholar 

  70. Musial W, Butterfield S, Mcniff B (2007) Improving wind turbine gearbox reliability. In: Eur Wind Energy Conf Exhib 2007, EWEC 2007 3, pp 1770–1779

  71. Sheng S (2017) Wind turbine gearbox reliability database, operation and maintenance research update drivetrain reliability collaborative meeting

  72. Bhardwaj U, Teixeira AP, Soares CG (2019) Reliability prediction of an offshore wind turbine gearbox. Renew Energy 141:693–706. https://doi.org/10.1016/j.renene.2019.03.136

    Article  Google Scholar 

  73. Keller J, Gould B, Greco A (2019) Investigation of bearing axial cracking: benchtop and full scale test results

  74. Evans MH (2016) An updated review: white etching cracks (WECs) and axial cracks in wind turbine gearbox bearings. Mater Sci Technol 32:1133–1169. https://doi.org/10.1080/02670836.2015.1133022

    Article  Google Scholar 

  75. Evans MH (2013) White structure flaking (WSF) in wind turbine gearbox bearings: effects of ‘butterflies’ and white etching cracks (WECs). Mater Sci Technol 28:3–22. https://doi.org/10.1179/026708311X13135950699254

    Article  Google Scholar 

  76. Su Y-S, Yu S-R, Li S-X, He Y-N (2019) Review of the damage mechanism in wind turbine gearbox bearings under rolling contact fatigue. Front Mech Eng. https://doi.org/10.1007/s11465-018-0474-1

    Article  Google Scholar 

  77. Vrček A, Hultqvist T, Baubet Y et al (2019) Micro-pitting damage of bearing steel surfaces under mixed lubrication conditions: effects of roughness, hardness and ZDDP additive. Tribol Int 138:239–249. https://doi.org/10.1016/J.TRIBOINT.2019.05.038

    Article  Google Scholar 

  78. Dhanola A, Garg HC (2020) Tribological challenges and advancements in wind turbine bearings: a review. Eng Fail Anal. https://doi.org/10.1016/j.engfailanal.2020.104885

    Article  Google Scholar 

  79. Liu Z, Zhang L (2020) A review of failure modes, condition monitoring and fault diagnosis methods for large-scale wind turbine bearings. Measurement 149:107002. https://doi.org/10.1016/J.MEASUREMENT.2019.107002

    Article  Google Scholar 

  80. Qiao W, Lu D (2015) A survey on wind turbine condition monitoring and fault diagnosis—part I: components and subsystems. IEEE Trans Ind Electron 62:6546–6557. https://doi.org/10.1109/TIE.2015.2422394

    Article  Google Scholar 

  81. Feng K, Borghesani P, Smith WA et al (2019) Vibration-based updating of wear prediction for spur gears. Wear 426–427:1410–1415. https://doi.org/10.1016/J.WEAR.2019.01.017

    Article  Google Scholar 

  82. Nejad AR, Gao Z, Moan T (2014) Fatigue reliability-based inspection and maintenance planning of gearbox components in wind turbine drivetrains. Energy Proc 53:248–257. https://doi.org/10.1016/j.egypro.2014.07.234

    Article  Google Scholar 

  83. Zhang B, Liu H, Zhu C, Li Z (2019) Numerical simulation of competing mechanism between pitting and micro-pitting of a wind turbine gear considering surface roughness. Eng Fail Anal 104:1–12. https://doi.org/10.1016/j.engfailanal.2019.05.016

    Article  Google Scholar 

  84. Barszcz T, Randall RB (2008) Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine. Mech Syst Signal Process. https://doi.org/10.1016/j.ymssp.2008.07.019

    Article  Google Scholar 

  85. Liang X, Zuo MJ, Feng Z (2018) Dynamic modeling of gearbox faults: a review. Mech Syst Signal Process 98:852–876. https://doi.org/10.1016/j.ymssp.2017.05.024

    Article  Google Scholar 

  86. Shen G, Xiang D, Zhu K et al (2018) Fatigue failure mechanism of planetary gear train for wind turbine gearbox. Eng Fail Anal 87:96–110. https://doi.org/10.1016/J.ENGFAILANAL.2018.01.007

    Article  Google Scholar 

  87. Greco A, Sheng S, Keller J, Erdemir A (2013) Material wear and fatigue in wind turbine systems. Wear 302:1583–1591. https://doi.org/10.1016/j.wear.2013.01.060

    Article  Google Scholar 

  88. Parmar A, Ramkumar P, Shankar K (2020) Macro geometry multi-objective optimization of planetary gearbox considering scuffing constraint. Mech Mach Theory 154:104045. https://doi.org/10.1016/J.MECHMACHTHEORY.2020.104045

    Article  Google Scholar 

  89. Grujicic M, Galgalikar R, Ramaswami S et al (2014) Finite-element analysis of horizontal-axis wind-turbine gearbox failure via tooth-bending fatigue. Int J Mater Mech Eng 3:6. https://doi.org/10.14355/ijmme.2014.0301.02

    Article  Google Scholar 

  90. Maropoulos PG, Ceglarek D (2010) Design verification and validation in product lifecycle. CIRP Ann - Manuf Technol 59:740–759. https://doi.org/10.1016/j.cirp.2010.05.005

    Article  Google Scholar 

  91. Rapp BE (2017) Finite element method. In: Microfluid. model. mech. math., pp 655–678

  92. Marwala T (2010) Finite element model updating using computational intelligence techniques: applications to structural dynamics. Springer

  93. Rajasekaran S (2009) Introduction to dynamics. In: Struct. dyn. earthq. eng., pp 1–6

  94. Petyt M (2010) Introduction to finite element vibration analysis. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  95. Xue S, Entwistle R, Mazhar I, Howard I (2016) The spur planetary gear torsional stiffness and its crack sensitivity under quasi-static conditions. Eng Fail Anal. https://doi.org/10.1016/j.engfailanal.2016.02.019

    Article  Google Scholar 

  96. Liu X, Yang Y, Zhang J (2018) Resultant vibration signal model based fault diagnosis of a single stage planetary gear train with an incipient tooth crack on the sun gear. Renew Energy 122:65–79. https://doi.org/10.1016/J.RENENE.2018.01.072

    Article  Google Scholar 

  97. Yi P, Huang P, Shi T (2016) Numerical analysis and experimental investigation of modal properties for the gearbox in wind turbine. Front Mech Eng 114(11):388–402. https://doi.org/10.1007/S11465-016-0404-Z

    Article  Google Scholar 

  98. Xu L, Zhu C, Liu H et al (2019) Dynamic characteristics and experimental study on a wind turbine gearbox. J Mech Sci Technol 33:393–402. https://doi.org/10.1007/s12206-018-1239-9

    Article  Google Scholar 

  99. Concli F, Gorla C (2021) Dynamic modeling of gears: an innovative hybrid FEM-analytical approach. Int J Comput Methods Exp Meas 9:117–125. https://doi.org/10.2495/CMEM-V9-N2-117-125

    Article  Google Scholar 

  100. Ghorpade SS, Kadam AB, Mane DA et al (2015) Dynamic modeling of PGT using analytical & numerical approach. J Mech Des Vib 3:24–30. https://doi.org/10.12691/jmdv-3-1-3

    Article  Google Scholar 

  101. Wang R, Han T, Wang W et al (2018) Fracture analysis and improvement of the main shaft of wind turbine based on finite element method. Adv Mech Eng 10:168781401876900. https://doi.org/10.1177/1687814018769003

    Article  Google Scholar 

  102. Bangalore P, Letzgus S, Karlsson D, Patriksson M (2017) An artificial neural network-based condition monitoring method for wind turbines, with application to the monitoring of the gearbox. Wind Energy 20:1421–1438. https://doi.org/10.1002/we.2102

    Article  Google Scholar 

  103. Kim P (2017) MATLAB deep learning: with machine learning, neural networks and artificial intelligence. Apress

  104. Chen ZQ, Li C, Sanchez RV (2015) Gearbox fault identification and classification with convolutional neural networks. Shock Vib. https://doi.org/10.1155/2015/390134

    Article  Google Scholar 

  105. Jing L, Zhao M, Li P, Xu X (2017) A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox. Meas J Int Meas Confed 111:1–10. https://doi.org/10.1016/j.measurement.2017.07.017

    Article  Google Scholar 

  106. Simani S, Turhan C (2018) Fault diagnosis of a wind turbine simulated model via neural networks. IFAC-PapersOnLine 51:381–388. https://doi.org/10.1016/j.ifacol.2018.09.605

    Article  Google Scholar 

  107. Fu J, Chu J, Guo P, Chen Z (2019) Condition monitoring of wind turbine gearbox bearing based on deep learning model. IEEE Access 7:57078–57087. https://doi.org/10.1109/ACCESS.2019.2912621

    Article  Google Scholar 

  108. Jiang G, He H, Yan J, Xie P (2019) Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox. IEEE Trans Ind Electron 66:3196–3207. https://doi.org/10.1109/TIE.2018.2844805

    Article  Google Scholar 

  109. He J, Wu P, Gao J et al (2020) Wind turbine gearbox fault detection based on dilated convolutional neural networks. In: 7th int conf information, cybern comput soc syst ICCSS 2020, pp 517–521. https://doi.org/10.1109/ICCSS52145.2020.9336913

  110. Zhang X, Han P, Xu L et al (2020) Research on bearing fault diagnosis of wind turbine gearbox based on 1DCNN-PSO-SVM. IEEE Access 8:192248–192258. https://doi.org/10.1109/ACCESS.2020.3032719

    Article  Google Scholar 

  111. Cui M, Wang Y (2020) Fault detection of rotating machinery based on wavelet transform and improved deep neural network. In: Proc 2020 IEEE 9th data driven control learn syst conf DDCLS 2020, pp 449–454. https://doi.org/10.1109/DDCLS49620.2020.9275102

  112. Zhang J, Xu B, Wang Z, Zhang J (2021) An FSK-MBCNN based method for compound fault diagnosis in wind turbine gearboxes. Meas J Int Meas Confed 172:108933. https://doi.org/10.1016/j.measurement.2020.108933

    Article  Google Scholar 

  113. Xiang L, An C, Zhang Y, Hu A (2021) Failure dynamic modelling and analysis of planetary gearbox considering gear tooth spalling. Eng Fail Anal 125:105444. https://doi.org/10.1016/j.engfailanal.2021.105444

    Article  Google Scholar 

  114. Teng W, Ding X, Tang S et al (2021) Vibration analysis for fault detection of wind turbine drivetrains—a comprehensive investigation. Sensors 21:1–33. https://doi.org/10.3390/S21051686

    Article  Google Scholar 

  115. Hart E, Clarke B, Nicholas G et al (2019) A review of wind turbine main bearings: design, operation, modelling, damage mechanisms and fault detection. Wind Energy Sci 5:105–124. https://doi.org/10.5194/wes-5-105-2020

    Article  Google Scholar 

  116. Kumar A, Gandhi CP, Zhou Y et al (2020) Latest developments in gear defect diagnosis and prognosis: a review. Measurement 158:107735

    Article  Google Scholar 

  117. Lei Y (2017) Intelligent fault diagnosis and remaining useful life prediction of rotating machinery. Elsevier Inc.

  118. Gao Y, Liu X, Xiang J (2020) FEM simulation-based generative adversarial networks to detect bearing faults. IEEE Trans Ind Inform 16:4961–4971. https://doi.org/10.1109/TII.2020.2968370

    Article  Google Scholar 

  119. Concli F, Pierri L, Sbarufatti C (2021) A model-based SHM strategy for gears—development of a hybrid FEM-analytical approach to investigate the effects of surface fatigue on the vibrational spectra of a back-to-back test rig. Appl Sci 11:2026

    Article  Google Scholar 

  120. Luo L, Zhang B, Zhang G, Xu Y (2020) Rapid prediction of cured shape types of composite laminates using a FEM-ANN method. Compos Struct 238:111980. https://doi.org/10.1016/j.compstruct.2020.111980

    Article  Google Scholar 

  121. Ktari A, Elmansori M (2020) Bridging FEM and artificial neural network in gating system design for smart 3D sand casting. Proc Manuf 51:795–800. https://doi.org/10.1016/J.PROMFG.2020.10.111

    Article  Google Scholar 

  122. Tran TT, Nguyen PC, Pham QH (2021) Vibration analysis of FGM plates in thermal environment resting on elastic foundation using ES-MITC3 element and prediction of ANN. Case Stud Therm Eng 24:100852. https://doi.org/10.1016/J.CSITE.2021.100852

    Article  Google Scholar 

  123. Zhao Y, Dong S, Jiang F, Incecik A (2021) Mooring tension prediction based on BP neural network for semi-submersible platform. Ocean Eng 223:108714. https://doi.org/10.1016/J.OCEANENG.2021.108714

    Article  Google Scholar 

  124. Lei Y, Lin J, Zuo MJ, He Z (2014) Condition monitoring and fault diagnosis of planetary gearboxes: a review. Measurement 48:292–305. https://doi.org/10.1016/J.MEASUREMENT.2013.11.012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Opeoluwa I. Owolabi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owolabi, O.I., Madushele, N., Adedeji, P.A. et al. FEM and ANN approaches to wind turbine gearbox monitoring and diagnosis: a mini review. J Reliable Intell Environ 9, 399–419 (2023). https://doi.org/10.1007/s40860-022-00183-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40860-022-00183-4

Keywords

Navigation