[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

A Congruent Approach to Normal Wiggly Interval-Valued Hesitant Pythagorean Fuzzy Set for Thermal Energy Storage Technique Selection Applications

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Thermal energy is the energy from a substance in which molecules and atoms vibrate faster because of an increase in temperature. Thermal energy storage (TES) is an available energy resource for renewable energy platforms that enables them to meet sustainable technical requirements. The TES technique is divided into three categories; sensible TES, latent-heat TES, and thermo-chemical TES. The best of these techniques is selected in this research paper. Here the Interval-Valued Hesitant Pythagorean Fuzzy Set (IVPHFS) under the Normal Wiggly Mathematical Methodology is proposed and described for application to multi-criteria decision making (MCDM) technology. The MCDM methods, the Step-wise Weight Assessment Ratio Analysis (SWARA) method for determining weight values, and the Weighted Aggregated Sum Product Assessment (WASPAS) method for ranking alternative values are used employed here. The alternative values are selected based on the following criteria: capacity, efficiency, storage period, charging and discharging times, and cost

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ahmed, N., Elfeky, K.E., Lu, L., Wang, Q.W.: Thermal and economic evaluation of thermocline combined sensible-latent heat thermal energy storage system for medium temperature applications. Energy Convers. Manag. 189, 14–23 (2019). https://doi.org/10.1016/j.enconman.2019.03.040

    Article  Google Scholar 

  2. Asan, U., Kadaifci, C., Bozdag, E., Soyer, A., Serdarasan, S.: A new approach to DEMATEL based on interval-valued hesitant fuzzy sets. Appl. Soft Comput. 66, 34–49 (2018). https://doi.org/10.1016/j.asoc.2018.01.018

    Article  Google Scholar 

  3. Becattini, V., Haselbacher, A.: Toward a new method for the design of combined sensible/latent thermal-energy storage using non-dimensional analysis. Appl. Energy 247, 322–334 (2019). https://doi.org/10.1016/j.apenergy.2019.03.022

    Article  Google Scholar 

  4. Čurpek, J., Čekon, M.: Climate response of a BiPV façade system enhanced with latent PCM-based thermal energy storage. Renew. Energy 152, 368–384 (2020). https://doi.org/10.1016/j.renene.2020.01.070

    Article  Google Scholar 

  5. Das, S., Kar, S., Pal, T.: Robust decision making using intuitionistic fuzzy numbers. Granul. Comput. 2, 41–54 (2016). https://doi.org/10.1007/s41066-016-0024-3

    Article  Google Scholar 

  6. Das, S., Kumar, S., Kar, S., Pal, T.: Group decision making using neutrosophic soft matrix: an algorithmic approach. J. King Saud Univ. (2017). https://doi.org/10.1016/j.jksuci.2017.05.001

    Article  Google Scholar 

  7. Das, S., Roy, B.K., Kar, M.B., Kar, S., Pamučar, D.: Neutrosophic fuzzy set and its application in decision making. J. Ambient Intell. Hum. Comput. (2020). https://doi.org/10.1007/s12652-020-01808-3

    Article  Google Scholar 

  8. Dharmalingam, M., Mahapatra, G.S.: Multi-criteria decision-making using a complete ranking of generalized trapezoidal fuzzy numbers. Soft Comput. (2020). https://doi.org/10.1007/s00500-020-05322-8

    Article  Google Scholar 

  9. Gupta, P.K., Muhuri, P.K.: Computing with words for student strategy evaluation in an examination. Granul. Comput. (2018). https://doi.org/10.1007/s41066-018-0109-2

    Article  Google Scholar 

  10. Hu, M., Lan, J., Wang, Z.: A distance measure, similarity measure and possibility degree for hesitant interval-valued fuzzy sets. Comput. Ind. Eng. 137, 106088 (2019). https://doi.org/10.1016/j.cie.2019.106088

    Article  Google Scholar 

  11. İLbahar, E., Kahraman, C.: Retail store performance measurement using a novel interval-valued Pythagorean fuzzy WASPAS method. J. Intell. Fuzzy Syst. 35, 3835–3846 (2018)

    Article  Google Scholar 

  12. Jafarian, M., Arjomandi, M., Nathan, G.J.: A hybrid solar and chemical looping combustion system for solar thermal energy storage. Appl. Energy 103, 671–678 (2013). https://doi.org/10.1016/j.apenergy.2012.10.033

    Article  Google Scholar 

  13. Kahraman, C., Çevik Onar, S., Öztayşi, B., İlbahar, E.: Selection among GSM operators using Pythagorean fuzzy WASPAS method. J. Multiple-Valued Logic Soft Comput. 33, 459–469 (2019)

    MATH  Google Scholar 

  14. Khadiran, T., Hussein, M.Z., Zainal, Z., Rusli, R.: Encapsulation techniques for organic phase change materials as thermal energy storage medium: a review. Sol. Energy Mater. Sol. Cells 143, 78–98 (2015). https://doi.org/10.1016/j.solmat.2015.06.039

    Article  Google Scholar 

  15. Krishankumar, R., Ravichandran, K.S., Kar, S., Gupta, P., Mukesh Kumar, M.: Double-hierarchy hesitant fuzzy linguistic term set-based decision framework for multi-attribute group decision-making. Soft Comput. (2020). https://doi.org/10.1007/s00500-020-05328-2

    Article  Google Scholar 

  16. Krishankumar, R., Ravichandran, K.S., Shyam, V., Sneha, S.V., Kar, S.: Multi-attribute group decision-making using double hierarchy hesitant fuzzy linguistic preference information. Neural Comput. Appl. (2020). https://doi.org/10.1007/s00521-020-04802-0

    Article  Google Scholar 

  17. Liu, H., Cocea, M.: Granular computing-based approach for classification towards reduction of bias in ensemble learning. Granul. Comput. 2, 131–139 (2016). https://doi.org/10.1007/s41066-016-0034-1

    Article  Google Scholar 

  18. Liu, P., Yang, H.: Three-way decisions with single-valued neutrosophic decision theory rough sets based on grey relational analysis. Math. Probl. Eng. (2019). https://doi.org/10.1155/2019/3258018

    Article  Google Scholar 

  19. Liu, A., Ji, X., Lu, H., Liu, H.: The selection of 3PRLs on self-service mobile recycling machine: interval-valued pythagorean hesitant fuzzy best-worst multi-criteria group decision-making. J. Clean. Prod. 230, 734–750 (2019). https://doi.org/10.1016/j.jclepro.2019.04.257

    Article  Google Scholar 

  20. Liang, D., Xu, Z.: The new extension of TOPSIS method for multiple criteria decision making with hesitant Pythagorean fuzzy sets. Appl. Soft Comput. 60, 167–179 (2017). https://doi.org/10.1016/j.asoc.2017.06.034

    Article  Google Scholar 

  21. Liang, D., Zhang, Y., Xu, Z., Jamaldeen, A.: Pythagorean fuzzy VIKOR approaches based on TODIM for evaluating internet banking website quality of Ghanaian banking industry. Appl. Soft Comput. (2019). https://doi.org/10.1016/j.asoc.2019.03.006

    Article  Google Scholar 

  22. Lugolole, R., Mawire, A., Okello, D., Lentswe, K.A., Nyeinga, K., Shobo, A.B.: Experimental analyses of sensible heat thermal energy storage systems during discharging. Sustain. Energy Technol. Assess. 35, 117–130 (2019). https://doi.org/10.1016/j.seta.2019.06.007

    Article  Google Scholar 

  23. Mardani, A., Nilashi, M., Zakuan, N., Loganathan, N., Soheilirad, S., Saman, M.Z.M., Ibrahim, O.: A systematic review and meta-Analysis of SWARA and WASPAS methods: theory and applications with recent fuzzy developments. Appl. Soft Comput. 57, 265–292 (2017). https://doi.org/10.1016/j.asoc.2017.03.045

    Article  Google Scholar 

  24. Mishra, A.R., Rani, P., Pardasani, K.R., Mardani, A.: A novel hesitant fuzzy WASPAS method for assessment of green supplier problem based on exponential information measures. J. Clean. Prod. 238, 117901 (2019). https://doi.org/10.1016/j.jclepro.2019.117901

    Article  Google Scholar 

  25. Narayanamoorthy, S., Ramya, L., Baleanu, D., Kureethara, J.V., Annapoorani, V.: Application of normal wiggly dual hesitant fuzzy sets to site selection for hydrogen underground storage. Int. J. Hydrogen Energy 44, 28874–28892 (2019). https://doi.org/10.1016/j.ijhydene.2019.09.103

    Article  Google Scholar 

  26. Okazaki, T.: Electric thermal energy storage and advantage of rotating heater having synchronous inertia. Renew. Energy (2019). https://doi.org/10.1016/j.renene.2019.11.051

    Article  Google Scholar 

  27. Pamucar, D., Deveci, M., Schitea, D., Erişkin, L., Iordache, M.: Developing a novel fuzzy neutrosophic numbers based decision making analysis for prioritizing the energy storage technologies. Int. J. Hydrogen Energy (2020). https://doi.org/10.1016/j.ijhydene.2020.06.016

    Article  Google Scholar 

  28. Pérez-Fernández, R., Alonso, P., Bustince, H., Dí-az, I., Jurio, A., Montes, S.: Ordering finitely generated sets and finite interval-valued hesitant fuzzy sets. Inf. Sci. 325, 375–392 (2015). https://doi.org/10.1016/j.ins.2015.07.019

    Article  MathSciNet  MATH  Google Scholar 

  29. Quirós, P., Alonso, P., Bustince, H., Dí-az, I., Montes, S.: An entropy measure definition for finite interval-valued hesitant fuzzy sets. Knowl.-Based Syst. 84, 121–133 (2015). https://doi.org/10.1016/j.knosys.2015.04.005

    Article  Google Scholar 

  30. Quirós, P., Alonso, P., Dí-az, I., Janiš, V., Montes, S.: On cardinalities of finite interval-valued hesitant fuzzy sets. Inf. Sci. 418–419, 421–431 (2017). https://doi.org/10.1016/j.ins.2017.08.041

    Article  MATH  Google Scholar 

  31. Rani, P., Mishra, A.: Pythagorean fuzzy SWARA-VIKOR framework for performance evaluation of solar panel selection. Sustainability 12, 4278 (2020). https://doi.org/10.3390/su12104278

    Article  Google Scholar 

  32. Rani, P., Mishra, A.R., Pardasani, K.R., Mardani, A., Liao, H., Streimikiene, D.: A novel VIKOR approach based on entropy and divergence measures of Pythagorean fuzzy sets to evaluate renewable energy technologies in India. J. Clean. Prod. 238, 117936 (2019). https://doi.org/10.1016/j.jclepro.2019.117936

    Article  Google Scholar 

  33. Ren, Z., Xu, Z., Wang, H.: Normal wiggly hesitant fuzzy sets and their application to environmental quality evaluation. Knowl.-Based Syst. 159, 286–297 (2018). https://doi.org/10.1016/j.knosys.2018.06.024

    Article  Google Scholar 

  34. Scapino, L., De Servi, C., Zondag, H.A., Diriken, J.: Techno-economic optimization of an energy system with sorption thermal energy storage in different energy markets. Appl. Energy (2019). https://doi.org/10.1016/j.apenergy.2019.114063

    Article  Google Scholar 

  35. Singh, P., Huang, Y.P.: A four-way decision-making approach using interval-valued fuzzy sets, rough set and granular computing: a new approach in data classification and decision-making. Granul. Comput. (2019). https://doi.org/10.1007/s41066-019-00165-7

    Article  Google Scholar 

  36. Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25, 529–539 (2010)

    MATH  Google Scholar 

  37. Ullah, Z., Ullah, A., Shah, K., Baleanu, D.: Computation of semi-analytical solutions of fuzzy nonlinear integral equations. Adv. Differ. Equ. (2020). https://doi.org/10.1186/s13662-020-02989-z

    Article  MathSciNet  Google Scholar 

  38. Wang, J., Wu, J., Wang, J., Zhang, H., Chen, X.: Interval-valued hesitant fuzzy linguistic sets and their applications in multi-criteria decision-making problems. Inf. Sci. 288, 55–72 (2014). https://doi.org/10.1016/j.ins.2014.07.034

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, C., Li, D., Mu, Y., Song, D.: An interval-valued hesitant fuzzy multigranulation rough set over two universes model for steam turbine fault diagnosis. Appl. Math. Model. 42, 693–704 (2017). https://doi.org/10.1016/j.apm.2016.10.048

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, J., Xu, C., Song, Z., Huang, Y., Wu, Y.: Decision framework for ocean thermal energy plant site selection from a sustainability perspective: the case of China. J. Clean. Prod. 225, 771–784 (2019). https://doi.org/10.1016/j.jclepro.2019.04.032

    Article  Google Scholar 

  41. Zhang, M., Zheng, T., Zheng, W., Zhou, L.: Interval-valued Pythagorean hesitant fuzzy set and its application to multiattribute group decision-making. Complexity (2020). https://doi.org/10.1155/2020/1724943

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2019R1G1A1006073).

Author information

Authors and Affiliations

Authors

Contributions

All of the authors have contributed equally to the article. Further, all of the authors have validated and approved the final manuscript.

Corresponding author

Correspondence to Daekook Kang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding this research work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramya, L., Narayanamoorthy, S., Kalaiselvan, S. et al. A Congruent Approach to Normal Wiggly Interval-Valued Hesitant Pythagorean Fuzzy Set for Thermal Energy Storage Technique Selection Applications. Int. J. Fuzzy Syst. 23, 1581–1599 (2021). https://doi.org/10.1007/s40815-021-01057-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01057-2

Keywords

Navigation