Abstract
Thermal energy is the energy from a substance in which molecules and atoms vibrate faster because of an increase in temperature. Thermal energy storage (TES) is an available energy resource for renewable energy platforms that enables them to meet sustainable technical requirements. The TES technique is divided into three categories; sensible TES, latent-heat TES, and thermo-chemical TES. The best of these techniques is selected in this research paper. Here the Interval-Valued Hesitant Pythagorean Fuzzy Set (IVPHFS) under the Normal Wiggly Mathematical Methodology is proposed and described for application to multi-criteria decision making (MCDM) technology. The MCDM methods, the Step-wise Weight Assessment Ratio Analysis (SWARA) method for determining weight values, and the Weighted Aggregated Sum Product Assessment (WASPAS) method for ranking alternative values are used employed here. The alternative values are selected based on the following criteria: capacity, efficiency, storage period, charging and discharging times, and cost
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ahmed, N., Elfeky, K.E., Lu, L., Wang, Q.W.: Thermal and economic evaluation of thermocline combined sensible-latent heat thermal energy storage system for medium temperature applications. Energy Convers. Manag. 189, 14–23 (2019). https://doi.org/10.1016/j.enconman.2019.03.040
Asan, U., Kadaifci, C., Bozdag, E., Soyer, A., Serdarasan, S.: A new approach to DEMATEL based on interval-valued hesitant fuzzy sets. Appl. Soft Comput. 66, 34–49 (2018). https://doi.org/10.1016/j.asoc.2018.01.018
Becattini, V., Haselbacher, A.: Toward a new method for the design of combined sensible/latent thermal-energy storage using non-dimensional analysis. Appl. Energy 247, 322–334 (2019). https://doi.org/10.1016/j.apenergy.2019.03.022
Čurpek, J., Čekon, M.: Climate response of a BiPV façade system enhanced with latent PCM-based thermal energy storage. Renew. Energy 152, 368–384 (2020). https://doi.org/10.1016/j.renene.2020.01.070
Das, S., Kar, S., Pal, T.: Robust decision making using intuitionistic fuzzy numbers. Granul. Comput. 2, 41–54 (2016). https://doi.org/10.1007/s41066-016-0024-3
Das, S., Kumar, S., Kar, S., Pal, T.: Group decision making using neutrosophic soft matrix: an algorithmic approach. J. King Saud Univ. (2017). https://doi.org/10.1016/j.jksuci.2017.05.001
Das, S., Roy, B.K., Kar, M.B., Kar, S., Pamučar, D.: Neutrosophic fuzzy set and its application in decision making. J. Ambient Intell. Hum. Comput. (2020). https://doi.org/10.1007/s12652-020-01808-3
Dharmalingam, M., Mahapatra, G.S.: Multi-criteria decision-making using a complete ranking of generalized trapezoidal fuzzy numbers. Soft Comput. (2020). https://doi.org/10.1007/s00500-020-05322-8
Gupta, P.K., Muhuri, P.K.: Computing with words for student strategy evaluation in an examination. Granul. Comput. (2018). https://doi.org/10.1007/s41066-018-0109-2
Hu, M., Lan, J., Wang, Z.: A distance measure, similarity measure and possibility degree for hesitant interval-valued fuzzy sets. Comput. Ind. Eng. 137, 106088 (2019). https://doi.org/10.1016/j.cie.2019.106088
İLbahar, E., Kahraman, C.: Retail store performance measurement using a novel interval-valued Pythagorean fuzzy WASPAS method. J. Intell. Fuzzy Syst. 35, 3835–3846 (2018)
Jafarian, M., Arjomandi, M., Nathan, G.J.: A hybrid solar and chemical looping combustion system for solar thermal energy storage. Appl. Energy 103, 671–678 (2013). https://doi.org/10.1016/j.apenergy.2012.10.033
Kahraman, C., Çevik Onar, S., Öztayşi, B., İlbahar, E.: Selection among GSM operators using Pythagorean fuzzy WASPAS method. J. Multiple-Valued Logic Soft Comput. 33, 459–469 (2019)
Khadiran, T., Hussein, M.Z., Zainal, Z., Rusli, R.: Encapsulation techniques for organic phase change materials as thermal energy storage medium: a review. Sol. Energy Mater. Sol. Cells 143, 78–98 (2015). https://doi.org/10.1016/j.solmat.2015.06.039
Krishankumar, R., Ravichandran, K.S., Kar, S., Gupta, P., Mukesh Kumar, M.: Double-hierarchy hesitant fuzzy linguistic term set-based decision framework for multi-attribute group decision-making. Soft Comput. (2020). https://doi.org/10.1007/s00500-020-05328-2
Krishankumar, R., Ravichandran, K.S., Shyam, V., Sneha, S.V., Kar, S.: Multi-attribute group decision-making using double hierarchy hesitant fuzzy linguistic preference information. Neural Comput. Appl. (2020). https://doi.org/10.1007/s00521-020-04802-0
Liu, H., Cocea, M.: Granular computing-based approach for classification towards reduction of bias in ensemble learning. Granul. Comput. 2, 131–139 (2016). https://doi.org/10.1007/s41066-016-0034-1
Liu, P., Yang, H.: Three-way decisions with single-valued neutrosophic decision theory rough sets based on grey relational analysis. Math. Probl. Eng. (2019). https://doi.org/10.1155/2019/3258018
Liu, A., Ji, X., Lu, H., Liu, H.: The selection of 3PRLs on self-service mobile recycling machine: interval-valued pythagorean hesitant fuzzy best-worst multi-criteria group decision-making. J. Clean. Prod. 230, 734–750 (2019). https://doi.org/10.1016/j.jclepro.2019.04.257
Liang, D., Xu, Z.: The new extension of TOPSIS method for multiple criteria decision making with hesitant Pythagorean fuzzy sets. Appl. Soft Comput. 60, 167–179 (2017). https://doi.org/10.1016/j.asoc.2017.06.034
Liang, D., Zhang, Y., Xu, Z., Jamaldeen, A.: Pythagorean fuzzy VIKOR approaches based on TODIM for evaluating internet banking website quality of Ghanaian banking industry. Appl. Soft Comput. (2019). https://doi.org/10.1016/j.asoc.2019.03.006
Lugolole, R., Mawire, A., Okello, D., Lentswe, K.A., Nyeinga, K., Shobo, A.B.: Experimental analyses of sensible heat thermal energy storage systems during discharging. Sustain. Energy Technol. Assess. 35, 117–130 (2019). https://doi.org/10.1016/j.seta.2019.06.007
Mardani, A., Nilashi, M., Zakuan, N., Loganathan, N., Soheilirad, S., Saman, M.Z.M., Ibrahim, O.: A systematic review and meta-Analysis of SWARA and WASPAS methods: theory and applications with recent fuzzy developments. Appl. Soft Comput. 57, 265–292 (2017). https://doi.org/10.1016/j.asoc.2017.03.045
Mishra, A.R., Rani, P., Pardasani, K.R., Mardani, A.: A novel hesitant fuzzy WASPAS method for assessment of green supplier problem based on exponential information measures. J. Clean. Prod. 238, 117901 (2019). https://doi.org/10.1016/j.jclepro.2019.117901
Narayanamoorthy, S., Ramya, L., Baleanu, D., Kureethara, J.V., Annapoorani, V.: Application of normal wiggly dual hesitant fuzzy sets to site selection for hydrogen underground storage. Int. J. Hydrogen Energy 44, 28874–28892 (2019). https://doi.org/10.1016/j.ijhydene.2019.09.103
Okazaki, T.: Electric thermal energy storage and advantage of rotating heater having synchronous inertia. Renew. Energy (2019). https://doi.org/10.1016/j.renene.2019.11.051
Pamucar, D., Deveci, M., Schitea, D., Erişkin, L., Iordache, M.: Developing a novel fuzzy neutrosophic numbers based decision making analysis for prioritizing the energy storage technologies. Int. J. Hydrogen Energy (2020). https://doi.org/10.1016/j.ijhydene.2020.06.016
Pérez-Fernández, R., Alonso, P., Bustince, H., Dí-az, I., Jurio, A., Montes, S.: Ordering finitely generated sets and finite interval-valued hesitant fuzzy sets. Inf. Sci. 325, 375–392 (2015). https://doi.org/10.1016/j.ins.2015.07.019
Quirós, P., Alonso, P., Bustince, H., Dí-az, I., Montes, S.: An entropy measure definition for finite interval-valued hesitant fuzzy sets. Knowl.-Based Syst. 84, 121–133 (2015). https://doi.org/10.1016/j.knosys.2015.04.005
Quirós, P., Alonso, P., Dí-az, I., Janiš, V., Montes, S.: On cardinalities of finite interval-valued hesitant fuzzy sets. Inf. Sci. 418–419, 421–431 (2017). https://doi.org/10.1016/j.ins.2017.08.041
Rani, P., Mishra, A.: Pythagorean fuzzy SWARA-VIKOR framework for performance evaluation of solar panel selection. Sustainability 12, 4278 (2020). https://doi.org/10.3390/su12104278
Rani, P., Mishra, A.R., Pardasani, K.R., Mardani, A., Liao, H., Streimikiene, D.: A novel VIKOR approach based on entropy and divergence measures of Pythagorean fuzzy sets to evaluate renewable energy technologies in India. J. Clean. Prod. 238, 117936 (2019). https://doi.org/10.1016/j.jclepro.2019.117936
Ren, Z., Xu, Z., Wang, H.: Normal wiggly hesitant fuzzy sets and their application to environmental quality evaluation. Knowl.-Based Syst. 159, 286–297 (2018). https://doi.org/10.1016/j.knosys.2018.06.024
Scapino, L., De Servi, C., Zondag, H.A., Diriken, J.: Techno-economic optimization of an energy system with sorption thermal energy storage in different energy markets. Appl. Energy (2019). https://doi.org/10.1016/j.apenergy.2019.114063
Singh, P., Huang, Y.P.: A four-way decision-making approach using interval-valued fuzzy sets, rough set and granular computing: a new approach in data classification and decision-making. Granul. Comput. (2019). https://doi.org/10.1007/s41066-019-00165-7
Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25, 529–539 (2010)
Ullah, Z., Ullah, A., Shah, K., Baleanu, D.: Computation of semi-analytical solutions of fuzzy nonlinear integral equations. Adv. Differ. Equ. (2020). https://doi.org/10.1186/s13662-020-02989-z
Wang, J., Wu, J., Wang, J., Zhang, H., Chen, X.: Interval-valued hesitant fuzzy linguistic sets and their applications in multi-criteria decision-making problems. Inf. Sci. 288, 55–72 (2014). https://doi.org/10.1016/j.ins.2014.07.034
Zhang, C., Li, D., Mu, Y., Song, D.: An interval-valued hesitant fuzzy multigranulation rough set over two universes model for steam turbine fault diagnosis. Appl. Math. Model. 42, 693–704 (2017). https://doi.org/10.1016/j.apm.2016.10.048
Zhang, J., Xu, C., Song, Z., Huang, Y., Wu, Y.: Decision framework for ocean thermal energy plant site selection from a sustainability perspective: the case of China. J. Clean. Prod. 225, 771–784 (2019). https://doi.org/10.1016/j.jclepro.2019.04.032
Zhang, M., Zheng, T., Zheng, W., Zhou, L.: Interval-valued Pythagorean hesitant fuzzy set and its application to multiattribute group decision-making. Complexity (2020). https://doi.org/10.1155/2020/1724943
Acknowledgements
This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2019R1G1A1006073).
Author information
Authors and Affiliations
Contributions
All of the authors have contributed equally to the article. Further, all of the authors have validated and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interest regarding this research work.
Rights and permissions
About this article
Cite this article
Ramya, L., Narayanamoorthy, S., Kalaiselvan, S. et al. A Congruent Approach to Normal Wiggly Interval-Valued Hesitant Pythagorean Fuzzy Set for Thermal Energy Storage Technique Selection Applications. Int. J. Fuzzy Syst. 23, 1581–1599 (2021). https://doi.org/10.1007/s40815-021-01057-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-021-01057-2