[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Fuzzy Regression Analysis Based on Fuzzy Neural Networks Using Trapezoidal Data

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Fuzzy regression is a generalized regression model to represent the relationship between dependent and independent variables in a fuzzy environment. The fuzzy linear regression analysis seeks for regression models fitting well all the data based on a specific criterion. In this paper, an adaptive neuro-fuzzy inference system (ANFIS) is employed for the analysis and prediction of a nonparametric fuzzy regression function with non-fuzzy inputs and symmetric trapezoidal fuzzy outputs. To this end, two new hybrid algorithms are proposed in which the fuzzy least squares and linear programming have been used to optimize the secondary weights. The algorithms are applied to a multi-layered validation method to confirm the models’ reliability. In addition, three methods of nonparametric fuzzy regression with crisp inputs and asymmetric trapezoidal fuzzy outputs, are compared. Three nonparametric techniques in statistics, namely local linear smoothing (L-L-S), K-nearest neighbor smoothing (K-NN) and kernel smoothing (K-S) with trapezoidal fuzzy data have been analyzed to obtain the best smoothing parameters. The performance of the models is illustrated through numerical examples and simulations. More specifically, the accuracy of the algorithms is confirmed by exhaustive simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

\({MF}_{i}\) :

Membership function

\(\stackrel{\sim }{{Y}_{i}}\) :

A trapezoidal fizzy number

\({o}_{k.i}\) :

Placed as layers

\(d^{2} \left( {\tilde{Y}_{i} \cdot \widehat{{Y_{i} }}} \right)\) :

Diamond distance measures

\(\left( \widehat{{\widetilde{{Y_{i} }}}} \right)\) :

A predicted of a trapezoidal fuzzy number

\({\omega }_{j}\left(x\right)\) :

Weight sequence at \(x\)

\(CV\) :

Cross-validation

k(.):

Kernel smoothing

References

  1. Zadeh, A.: Fuzzy sets. Inform Control. 8, 338–353 (1965)

    Article  Google Scholar 

  2. Tanaka, H., Uejima, S., Asia, K.: Linear regression analysis with fuzzy model. IEEE Trans. Syst. Man Cybernet. 12, 903–907 (1982)

    Article  Google Scholar 

  3. Ishibuchi, H., Tanaka, H.: Fuzzy regression analysis using neural networks. Fuzzy Sets Syst. 50, 257–265 (1992)

    Article  MathSciNet  Google Scholar 

  4. Diamond, P.: Fuzzy least squares. Inf. Sci. 46, 141–157 (1988)

    Article  MathSciNet  Google Scholar 

  5. Chang, P.T., Lee, E.S.: A generalized fuzzy weighted least-squares regression. Fuzzy Sets Syst. 82, 289–298 (1996)

    Article  MathSciNet  Google Scholar 

  6. Yang, M.S., Lin, T.S.: Fuzzy least-squares linear regression analysis for fuzzy input-output data. Fuzzy Sets Syst. 126, 389–399 (2002)

    Article  MathSciNet  Google Scholar 

  7. Kartalopous, S.: Underestanding neural networks and fuzzy logic. IEEE Press, New York (1996)

    Google Scholar 

  8. Tanaka, H., Hayashi, I., Watada, J.: Possibilistic linear regression analysis for fuzzy data. Eur. J. Oper. Res. 40, 389–396 (1989)

    Article  MathSciNet  Google Scholar 

  9. Cheng, C.B., Lee, E.S.: Fuzzy regression with radial basis function networks. Fuzzy Sets Syst. 119, 291–301 (2001)

    Article  MathSciNet  Google Scholar 

  10. Arnold, S.: The merging of neural networks, fuzzy logic, and genetic algorithms. Insur. Math. Econ. 31(1), 115–131 (2002)

    Article  MathSciNet  Google Scholar 

  11. Mosleh, M., Otadi, M., Abbasbandy, S.: Evaluation of fuzzy regression model by fuzzy neural networks. J. Comput. Appl. Math. 234, 825–834 (2010)

    Article  MathSciNet  Google Scholar 

  12. Danesh, S., Farnoosh, R., Razzaghnia, T.: Fuzzy nonparametric regression based on an adaptive neuro-fuzzy inference system. Neuro comput. 173, 1450–1460 (2016)

    MATH  Google Scholar 

  13. Sun, J., Lu, Q.: Regression analysis of a kind of trapezoidal fuzzy numbers based on a shape preserving operator. Data Anal. Inf. Process. 5, 96–114 (2017)

    Google Scholar 

  14. Cheng, C.B., Lee, E.S.: Nonparametric fuzzy regression k-NN and kernel smoothing techniques. Comput. Math. Appl. 38, 239–251 (1999)

    Article  MathSciNet  Google Scholar 

  15. Razzaghnia, T., Danesh, S., Maleki, A.: Hybrid fuzzy regression with trapezoidal fuzzy data. In: Proceedings of the SPIE. 8349, 834921–1–6 (2011).

  16. Razzaghnia, T., Danesh, S.: Nonparametric regression with trapezoidal fuzzy data. Int. J. Recent Innov. Trends Comput. Commun. (IJRITCC) 3, 3826–3831 (2015)

    Google Scholar 

  17. Razzaghnia, T.: Regression parameters prediction in data set with outliers using neural network. Hacettepe J. Math. Stat. 48(4), 1170–1184 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Škrjanc, I., Antonio Iglesias, J., Sanchis, A., Leite, D., Lughofer, E., Gomide, F.: Evolving fuzzy and neuro-fuzzy approaches in clustering, regression, identification, and classification: a survey. Inf. Sci. 490, 344–369 (2019)

    Article  Google Scholar 

  19. Junhong, L., Zeng, W.X., Yin, Q.: A new fuzzy regression model based on least absolute deviation. Eng. Appl. Artif. Intell. 52, 54–64 (2016)

    Article  Google Scholar 

  20. Deng, W., Zhao, A.: A novel collaborative optimization algorithm in solving complex optimization problems. Soft Comput. 21(15), 4387–4398 (2017)

    Article  Google Scholar 

  21. Khosravia, K., Shahabib, H.: A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods. J. Hydrol. 573, 311–323 (2019)

    Article  Google Scholar 

  22. Liu, T., Zhang, W., Mc Lean, P.: Electronic nose-based odor classification using genetic algorithms and fuzzy support vector machines. Int. J. Fuzzy Syst. 20, 1309–1320 (2018)

    Article  Google Scholar 

  23. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Application. Academic Press, New York (1980)

    MATH  Google Scholar 

  24. Ishibuchi, H., Nii, M.: Fuzzy regression using asymmetric fuzzy coefficients and fuzzified neural networks. Fuzzy Sets Syst. 119, 273–290 (2001)

    Article  MathSciNet  Google Scholar 

  25. Razzaghnia, T., Pasha, E., Khorram, E., Razzaghnia, A.: Fuzzy linear regression analysis with trapezoidal coefficients. First Joint Congress On Fuzzy and Intelligent Systems. Aug. 29–31 (2007).

  26. Loftsgaarden, D.O., Quesenberry, G.P.: A nonparametric estimate of a multivariate density function. Ann. Math. Stat. 36, 1049–1051 (1965)

    Article  MathSciNet  Google Scholar 

  27. Hart, J.D.: Nonparametric Smoothing and Lack-of-Fit Tests. Springer, New York (1997)

    Book  Google Scholar 

  28. Stone, M.: Cross validation choice and assessment of statistical predictions. J. Roy. Stat. Soc. 36, 111–147 (1974)

    MATH  Google Scholar 

  29. Lee, H., Tanaka, H.: Fuzzy approximations with non-symmetric fuzzy parameters in fuzzy regression analysis. J. Oper. Res. Soc. Jpn. 42, 98–112 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Razzaghnia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderkhani, R., Behzad, M.H., Razzaghnia, T. et al. Fuzzy Regression Analysis Based on Fuzzy Neural Networks Using Trapezoidal Data. Int. J. Fuzzy Syst. 23, 1267–1280 (2021). https://doi.org/10.1007/s40815-020-01033-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-01033-2

Keywords

Navigation