Abstract
In image pre-processing, edge detection is a non-trivial task. Sometimes, images are affected by vagueness so that the edges of objects are difficult to distinguish. Hence, the usual edge-detecting operators can give unreliable results, thus necessitating the use of fuzzy procedures. In literature, Chaira and Ray approach is a popular technique for fuzzy edge detection in which fuzzy divergence formulation is exploited. However, this approach does not specify the threshold technique must be applied. Then, in this work, starting from Chairy and Ray procedure, we present a new fuzzy edge detector based on both fuzzy divergence (thought and proved to be a distance) and fuzzy entropy minimization for the thresholding sub-step in gray-scale images. Eddy currents, thermal infrared, and electrospinning images were used to test the proposed procedure after their fuzzification by a suitable adaptive S-shaped fuzzy membership function. Moreover, the fuzziness content of each image has been quantified by new specific indices proposed here and formulated in terms of fuzzy divergence. The results have been evaluated by suitable assessment metrics here formulated and are considered to be encouraging when qualitatively and quantitatively compared with those obtained by some well-known I- and II-order edge detectors.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Gonzales, R.C., Woods, R.F.: Digital Image Processing. Prentice-Hall, New York (2007)
Kaur, D., Kayr, Y.: Various image sementation techniques: a review. Int J Comput Sci Mobile Comput 3(5), 414–809 (2014)
Zhang, S., Ma, Z., Zhang, G., Lei, T., Zhang, R.: Semantic image segmantation with deep convolutional neural networks and quick shift. Symm. MDPI 12(427), 1–1 (2020)
Pont-Tuset, J., Arbelaez, P., Barron, J.T., Marquez, F., Malik, J.: Multiscale combinatorial grouping for image segmentation and object proposal generation. IEEE Trans. Pattern Recogn. (2016). https://doi.org/10.1109/TPAMI.2016.2537320
Li, H.S., Qingxin, Z., Lan, S., Shen, C.Y., Zhou, R., Mo, J.: Image storagem retrieval, compression and segmentation in a quantum system. Quant. Inf. Process. 12(6), 2269–2290 (2013)
Qasim, A.J., Din, R.E., Alyousuf, F.Q.A.: Review on techniques and file formats of image compression. Bull. Electr. Eng. Inf. 9(2), 602–610 (2020)
Combettes, P.L., Pesquet, J.C.: Proximal Splitting Methods in Signal Processing, Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212 (2011)
Peng, B., Zhang, L., Zhang, D.: A Survey of graph theoretical approaches to image segmentation. Pattern Recogn. 46(3), 1020–1038 (2013)
Hay, G.J., Castilla, G., Wulder, M.A., Ruiz, J.R.: An automated object-based approach for the multiscale image segmentation of forest scense. Int. J. Appl. Earth Observ. Geoinform 7(4), 339–359 (2005)
Sharon, E., Brandt, A., Basri, R.: Fast multiscale image segmentation. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. 1, 70–77 (2020)
Russ, J.C., Brent Neal, F.: The Image Processing Handbook. CRC Press, Boca Raton (2018)
Zhang, K., Zhang, Y., Wang, P., Tian, Y., Yang, J.: An improved sobel edge algorithm and FPGA implementation. In: Proceedings of the 8th International Congress of Information and Communication Technology (ICICT-2018), Procedia Computer Science, 131, pp. 243–248 (2018)
Meltsov, V., Lapitsky, A.A, Rostovtsev, V.S.: FPGA-Implementation of a prediction module based on a generalized regression neural network. In: Proceedings of the IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus) (2020)
Cao, J., Chen, L., Wang, M., Tian, Y.: Implementating a parallel image edge detection algorithm based on the Otsu–Canny operator on the hadoop platform. Comput. Intell. Neurosci. 3598284, 1–12 (2018)
Verma, O.P., Parihar, A.S.: An optimal fuzzy system for edge detection in color image using bacterial foraging algorithm. IEEE Trans. Fuzzy Syst. 25(1), 114–127 (2017)
Pattanaik, A., Mishra, S., Rana, D.: Comparative study of edge detection using Renyi entropy and differential evolution. Int. J. Eng. Res. Technol. 4(3), 1001–1005 (2015)
Chaira, T., Ray, A.K.: Fuzzy Image Processing and Application with MatLab. Taylor & Francis Group, CRC Press, Boca Raton, London, New York (2010)
Chaira, T.: Medical Image Processing, Advanced Fuzzy Set Theoretic Techniques. Taylor & Francis Group, CRC Press, Boca Raton, London, New York (2015)
Pradeep Kumar Reddy, R., Nagaraju, C.: Improved canny edge detection technique using S-membership function. Int. J. Eng. Adv. Technol. (IJEAT) 8(6), 43–49 (2019)
Mittal, M., et al.: An efficient edge detection approach to provide better edge connectivity for image analysis. IEEE ACCESS 7, 33240–33255 (2019)
Ma, X., Liu, S., Hu, S., Geng, P., Liu, M., Zhao, J.: SAR image edge detection via sparse representation. Soft Comput. 22(8), 2507–2515 (2018)
Chen, S.C., Cheng Chiu, C.C.: Texture construction edge detection algorithm. Appl. Sci. (MDPI) 9, 1–25 (2019)
Wang, X., et al.: Detection and localization of image forgeries using improved mask regional convolutional neural network. Math. Biosci. Eng. 16(5), 4581–4593 (2019)
Sonka, M., et al.: Image Processsing. Analysis and Machine Vision. Brooks/Cole Publisher, London (2001)
Hagara, M., Kubinec, P.: About edge detection in digital images. Radioengineering 27(4), 1–11 (2018)
Sekehravani, E.A., Babulak, E., Masoodi, M.: Implementing Canny edge detection algorithm for noisy image. Bull. Electr. Eng. Inf. 9(4), 1404–1410 (2020)
Nanda, A., et al.: Image edge detection using fractional calculus with features and contrast enhancement. Circ. Syst. Signal Process. 37, 3946–3972 (2018)
Albuquerque, M.P., Esquef, I.A., Gesualdi Mello, A.R.: Image Thresholding using Tsallis entropy. Pattern Recogn. Lett. 25, 1059–1065 (2004)
Sahoo, P.K., Arora, G.: A thresholding method based on two-dimensional Reny’s entropy. Pattern Recogn. 37, 1149–1161 (2004)
Kenneth, H., Ohnishi, H.L., Ohnishi, N.: FEDGE-Fuzzy Edge Detection by Fuzzy Categorization and Classification of Edge, Fuzzy Logic in Artificial Intelligence, JCAI’95 Workshop, pp. 182–196 (1995)
Silva, L.E.V., SenraFilho, A. C. S., Fazan, V.P.S., Felipe, J.C., MurtaJunior, L.O.: Two-dimensional sample entropy: assessing image texture through irregularity. Biomed. Phys. Eng. Express. (1976). https://doi.org/10.1088/2057-1976/2/4/045002
Sadykova, D., James, A.P.: Quality assessment metrics for edge detection and edge-aware filtering: a tutorial review. https://doi.org/10.1109/ICACCI.2017.8126200
Panetta, K., Gao, C., Agaian, S., Nercessian, S.: Nonreference medical image edge map measure. Int. J. Biomed. Imaging 2014, 1–8 (2014)
Bausys, R., Karakeviciute-Januskeviciene, G., Cavallaro, F., Usovaite, A.: Algorithm selection for edge detection in satellite images by neutrosophic WASPAS method. Sustain. MDPI 12, 1–12 (2020)
Versaci, M., La Foresta, F., Morabito, F.C., Angiulli, G.: A fuzzy divergence approach for solving electrostatic identification problems for NDT applications. Int. J. Appl. Electromagn. Mech. 1, 1–14 (2018). https://doi.org/10.3233/JAE-170043
Vollmer, M., Mollmann, K.P.: Infrared Thermal Imaging. WILEY-YCH Verlag GmbH & Co, New York (2018)
Ieracitano, C., Panto, F., Mammone, N., Paviglianiti, A., Frontera, P., Morabito, F.C.: Towards an Automatic Classification of SEM Images of Nanomaterial via a Deep Learning Approach. Multidisciplinary Approaches to Neural Computing, in press
Versaci, M., Calcagno, S., Morabito, F.C: Image contrast enhancement by distances among points in fuzzy hyper-cubes. In: Lecture Notes in Computer Science, vol. 9257, pp. 494–505 (2015)
Versaci, M., Calcagno, S., Morabito, F.C.: Fuzzy geometrical approach based on unit hyper-cubes for image contrast enhancement. In: Proceedings of the IEEE International Conference on Signal and Image Processing (ICSIPA 2015), Kuala Lumpur, Malaysia, pp. 488–493 (2015)
Versaci, M., Morabito, F.C., Angiulli, G.: Adaptive image contrast enhancement by computing distances int a 4-dimensional fuzzy unit hypercube. IEEE Access 5, 26922–26931 (2017). https://doi.org/10.1109/ACCESS.2017.2776349
Pavo, J., Gasparics, A., Sebestyen, I., Vertesy, G., Darczi, C.S., Miya, K.: Eddy Current Testing with Fluxset Probe. Applied Electromagnetics and Mechanics. JSAEM, Tokyo (1996)
Doshi, J., Reneker, D.H.: Electrospinning process and applications of electrospunfibers. J. Electrostat. 35(2–3), 151–160 (1995)
Vilchez, A., Acevedo, F., Cea, M., Seeger, M., Navia, R.: Applications of electrospun nanofibers with antioxidant properties: a review. Nanomater. MDPI 10(175), 1–25 (2020)
Fenn, J.B., Mann, M., Meng, C.K., Wong, S.D.F., Whitehouse, C.M.: Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926), 64–71 (1989)
Versaci, M., Morabito, F.C.: Fuzzy time series approach for disruption prediction in tokamak reactors. IEEE Trans. Magn. 39(3), 1503–1506 (2003)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
A Proof of Theorem 1
A Proof of Theorem 1
Remark 9
Let us consider three fuzzy images, \(F({\bf{I}}_{norm})_j\), \(j=1,2,3\), whose gray levels are \(\hat{a_{ij}}\), \(\hat{b_{ij}}\), and \(\hat{c_{ij}}\) \(\in X\), respectively. Let us say, for simplicity, that
such that \(\alpha +\beta +\gamma =0.\) Further, with (26) taken into account, \(d({F({\bf{I}}_{norm})_1},{F({\bf{I}}_{norm})_2})\), \(d({F({\bf{I}}_{norm})_2},{F({\bf{I}}_{norm})_3})\), and
\(d({F({\bf{I}}_{norm})_3},{F({\bf{I}}_{norm})_1})\), as the generic addends of \(D({F({\bf{I}}_{norm})_1},{F({\bf{I}}_{norm})_2})\), \(D({F({\bf{I}}_{norm})_2},{F({\bf{I}}_{norm})_3})\), and \(D({F({\bf{I}}_{norm})_1},{F({\bf{I}}_{norm})_1})\), can be written as follows:
\(d({F({\bf{I}}_{norm})_1},{F({\bf{I}}_{norm})_2})=2- (1-\alpha ))\rm{{e}}^{\alpha }- (1+\alpha )\rm{{e}}^{-\alpha }\), \(d({F({\bf{I}}_{norm})_2},{F({\bf{I}}_{norm})_3})=2- (1-\beta ))\rm{{e}}^{\beta }- (1+\beta ) )\rm{{e}}^{-\gamma }\), \(d({F({\bf{I}}_{norm})_3},{F({\bf{I}}_{norm})_1})=2- (1-\gamma ))\rm{{e}}^{\gamma }- (1+\gamma ) )\rm{{e}}^{-\gamma }\). If they have the values
then, with the double summation operator applied to them, (8), (9), (10), and (11) apply.
We prove (27).
If (27) is true, then \(d(F({\bf{I}}_{norm})_1,F({\bf{I}}_{norm})_2)=2-(1-\alpha )\rm{{e}}^{\alpha }-(1+\alpha )\rm{{e}}^{-\alpha }\ge 0\), from which \(2\ge (1-\alpha )\rm{{e}}^{\alpha }+(1+\alpha )\rm{{e}}^{-\alpha }=\rm{{e}}^{\alpha }-\alpha \rm{{e}}^{\alpha }+\rm{{e}}^{-\alpha }\alpha \rm{{e}}^{-\alpha }=(\rm{{e}}^{\alpha }+\rm{{e}}^{-\alpha })-\alpha (\rm{{e}}^{\alpha }-\rm{{e}}^{-\alpha }).\) Then, \(2\ge 2\cosh (\alpha )-2\alpha \sinh (\alpha )\) and, again, \(1\ge \cosh (\alpha )-\alpha \sinh (\alpha ).\) Now, we set \(f(\alpha )=\cosh (\alpha )-(\alpha )\sinh (\alpha )\). However, aiming to search for the minimum value of \(f(\alpha )\), we impose \(f'(\alpha )=\sinh (\alpha )-\sinh (\alpha )-\alpha \cosh (\alpha )=0\) to achieve \(\alpha \cosh (\alpha )=0.\) \(\cosh (\alpha )=0\) is never null, hence the stationary value of \(f(\alpha )\) that one has for \(\alpha =0\). Again, if \(\alpha =0\), \(f(\alpha )=1\), while, if \(\alpha =1\), \(f(\alpha )=\frac{1}{e}<1\). From this, \(\alpha\) is a point of maximum for \(f(\alpha )\). Thus, \(1\ge \cosh (\alpha )-\alpha \sinh (\alpha )\) is always true. Then, given Remark 9, inequality (8) is also verified.
We prove (28).
The sufficient condition is easy to prove. In fact, if \(F({\bf{I}}_{norm})_1=F({\bf{I}}_{norm})_2\), then \(\alpha =0\). Thus, \(d(F({\bf{I}}_{norm})_1,F({\bf{I}}_{norm})_2)=2-(1-\alpha )\rm{{e}}^{\alpha }-(1+\alpha )\rm{{e}}^{-\alpha }=0\). Vice versa, to prove the necessary condition, we impose \(d(F({\bf{I}}_{norm})_1,F({\bf{I}}_{norm})_2)=0\), obtaining \(2=(1-\alpha )\rm{{e}}^{\alpha }-(1+\alpha )\rm{{e}}^{-\alpha }=0.\) Further, it is reasonable to write the following chain of equalities: \(2=(1-\alpha )\rm{{e}}^{\alpha }+(1+\alpha )\rm{{e}}^{-\alpha }=\rm{{e}}^{\alpha }-\alpha \rm{{e}}^{\alpha }+\rm{{e}}^{-\alpha }+\alpha \rm{{e}}^{-\alpha }=\rm{{e}}^{\alpha }+\rm{{e}}^{-\alpha }-\alpha (\rm{{e}}^{\alpha }-\rm{{e}}^{-\alpha })-\alpha (\rm{{e}}^{\alpha }-\rm{{e}}^{-\alpha })=\rm{{e}}^{\alpha }+\rm{{e}}^{-\alpha }-\alpha (\rm{{e}}^{\alpha }-\rm{{e}}^{-\alpha })=2\cosh (\alpha )-2(\alpha )\sinh (\alpha )\) to achieve \(1=\cosh (\alpha )-\alpha \sinh (\alpha )\) verified iff \(\alpha =0\). Thus, (28) is verified. Finally, by Remark 9, (9) is verified.
We prove (29).
\(d(F({\bf{I}}_{norm})_1,F({\bf{I}}_{norm})_2)=2-(1-\alpha )\rm{{e}}^{\alpha }-(1+\alpha )\rm{{e}}^{-\alpha }=2-(1-\alpha )\rm{{e}}^{-\alpha }-(1+\alpha )\rm{{e}}^{-\alpha }=d(F({\bf{I}}_{norm})_2,F({\bf{I}}_{norm})_1)\).
We prove (30).
\(d(F({\bf{I}}_{norm})_1,F({\bf{I}}_{norm})_2)=2-(1-\alpha )\rm{{e}}^{\alpha }-(1+\alpha )\rm{{e}}^{-\alpha }\le 2-(1-\beta )\rm{{e}}^{\beta }-(1+\beta )\rm{{e}}^{-\beta }+2-(1-\gamma )\rm{{e}}^{\gamma }-(1+\gamma )\rm{{e}}^{-\gamma }\), from which
By (31), we can write \(d(F({\bf{I}}_{norm})_1,F({\bf{I}}_{norm})_2)\le 2-(1+\alpha )^{-\alpha -\gamma }-\gamma \rm{{e}}^{-\alpha -\gamma }-(1-\alpha )\rm{{e}}^{\alpha +\gamma }+\gamma \rm{{e}}^{\alpha +\gamma }+2-(1-\gamma )\rm{{e}}^{\gamma }-(1+\alpha )\rm{{e}}^{-\alpha }.\) Further, by adding and subtracting \((1+\alpha )\rm{{e}}^{-\alpha }+(1-\alpha )\rm{{e}}^{\alpha }\), we obtain
In (32), \(2-(1+\alpha )\rm{{e}}^{-\alpha }-(1-\alpha )\rm{{e}}^{\alpha }=d(F({\bf{I}}_{norm})_1,F({\bf{I}}_{norm})_2)\), while \(2-(1-\gamma )\rm{{e}}^{\gamma }-(1+\gamma )\rm{{e}}^{-\gamma }=d(C,A).\) Then, (32) becomes
thereby reducing the problem to show that \((1+\alpha )\rm{{e}}^{-\alpha }+(1-\alpha )\rm{{e}}^{\alpha }-(1+\alpha )\rm{{e}}^{-\alpha -\gamma }-\gamma \rm{{e}}^{-\alpha -\gamma }-(1-\alpha )\rm{{e}}^{\alpha +\gamma }\) in (33) is not negative. However, \((1+\alpha )\rm{{e}}^{-\alpha }\ge 0\) and \((1-\alpha )\rm{{e}}^{\alpha }\ge 0.\). Thus, it remains to be shown that \(-(1+\alpha )\rm{{e}}^{-\alpha -\gamma }-\gamma )\rm{{e}}^{-\alpha -\gamma }-(1-\alpha )\rm{{e}}^{\alpha +\gamma }+\gamma \rm{{e}}^{\alpha +\gamma }\ge 0\). If, absurdly, it were \(-(1+\alpha )\rm{{e}}^{-\alpha -\gamma }-\gamma \rm{{e}}^{-\alpha -\gamma }-(1-\alpha )\rm{{e}}^{\alpha +\gamma }+\gamma \rm{{e}}^{\alpha +\gamma }< 0,\) we would get
from which \(\gamma <(1+\alpha +\gamma )\frac{\rm{{e}}^{-\alpha -\gamma }}{\rm{{e}}^{\alpha +\gamma }}+(1-\alpha ).\) If (34) is always true, it is necessary that \(\sup \{\gamma \}<\inf \{ (1+\alpha +\gamma )\frac{\rm{{e}}^{-\alpha -\gamma }}{\rm{{e}}^{\alpha +\gamma }}+(1-\alpha )\}\). However, \(\inf \{ 1-m_B(b_{ij})-m_A(a_{ij}) \}=0\) for which \(\inf \{1+\alpha +\gamma \}=0\) and \(\sup \{\gamma \}=1\) which results in a false inequality. Thus, (30) is true and, by Remark 9, (11) holds.
Rights and permissions
About this article
Cite this article
Versaci, M., Morabito, F.C. Image Edge Detection: A New Approach Based on Fuzzy Entropy and Fuzzy Divergence. Int. J. Fuzzy Syst. 23, 918–936 (2021). https://doi.org/10.1007/s40815-020-01030-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-020-01030-5