[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An Improved Neural Network Classifier Using Fuzzy Nearest Neighbor Partitioning Method

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this study, a novel method, fuzzy nearest neighbor partitioning (FNNP), is proposed for improving the classification capability of the neural network. For the original nearest neighbor partitioning method, the “short-sightedness defect” problem restrains the nearest neighbor partitioning method to learn valuable experience from the distribution information outside the samples’ nearest neighbors. Moreover, the noise sensitive problem that exists in the process of classifying the unknown samples further influences the performance of the nearest neighbor partitioning method. To overcome the short-sightedness defect problem, fuzzy logic theory is integrated into the FNNP, and promotes the ability that the FNNP learns experience from extensive distribution information. In addition, an improved classification strategy, which adopts the concept of the fuzzy nearest neighbor, is employed to increase the immunity of FNNP to noise when the unknown samples are classified. The proposed FNNP is compared with other classification methods for some famous datasets. The results of the experiments indicate that the proposed method achieves promising classification performance for various indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Do, T.D., Jin, C., Nguyen, V.H., Kim, H.: Mixture separability loss in a deep convolutional network for image classification. IET Image Process. 13(1), 135–141 (2019)

    Article  Google Scholar 

  2. Gao, Z., Wu, Q., Chen, H., Qian, X., Wang, Y., Zhang, H.: Target classification by constructing fuzzy automata system. Int. J. Fuzzy Syst. 20(8), 2620–2631 (2018)

    Article  Google Scholar 

  3. Kalia, H., Dehuri, S., Ghosh, A., Cho, S.-B.: Surrogate-assisted multi-objective genetic algorithms for fuzzy rule-based classification. Int. J. Fuzzy Syst. 20(6), 1938–1955 (2018)

    Article  Google Scholar 

  4. Nandedkar, A.V., Biswas, P.K.: A fuzzy min–max neural network classifier with compensatory neuron architecture. IEEE Trans. Neural Netw. 18(1), 42–54 (2007)

    Article  Google Scholar 

  5. Huang, W., Oh, S., Pedrycz, W.: Hybrid fuzzy wavelet neural networks architecture based on polynomial neural networks and fuzzy set/relation inference-based wavelet neurons. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3452–3462 (2018)

    Article  Google Scholar 

  6. Chai, R., Ling, S.H., Hunter, G.P., Tran, Y., Nguyen, H.T.: Brain-computer interface classifier for wheelchair commands using neural network with fuzzy particle swarm optimization. IEEE J. Biomed. Health Inform. 18(5), 1614–1624 (2014)

    Article  Google Scholar 

  7. Shang, H., Jiang, Z., Xu, R., Wang, D., Wu, P., Chen, Y.: The dynamic mechanism of a novel stochastic neural firing pattern observed in a real biological system. Cogn. Syst. Res. 53, 123–136 (2019)

    Article  Google Scholar 

  8. Jiang, G., He, H., Yan, J., Xie, P.: Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox. IEEE Tran. Ind. Electron. 66(4), 3196–3207 (2019)

    Article  Google Scholar 

  9. Chang, Y., Jung, C.: Single image reflection removal using convolutional neural networks. IEEE Trans. Image Process. 28(4), 1954–1966 (2019)

    Article  MathSciNet  Google Scholar 

  10. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2), 251–257 (1991)

    Article  MathSciNet  Google Scholar 

  11. Adeli, H.: Neural networks in civil engineering: 1989–000. Comput. Aided Civil Infrastructure Eng. 16(2), 126–142 (2001)

    Article  Google Scholar 

  12. Wang, L., Yang, B., Chen, Y., Abraham, A., Sun, H., Chen, Z., Wang, H.: Improvement of neural network classifier using floating centroids. Knowl. Inf. Syst. 31(3), 433–454 (2012)

    Article  Google Scholar 

  13. Cai, C., Liu, S., Wang, L., Yang, B., Chen, Z., Zhou, J.: Optimizing floating centroids method neural network classifier using dynamic multilayer particle swarm optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference, ser. GECCO ’18, pp. 394–401. ACM, New York (2018)

  14. Wang, L., Zhu, X., Yang, B., Guo, J., Liu, S., Li, M., Zhu, J., Abraham, A.: Accelerating nearest neighbor partitioning neural network classifier based on cuda. Eng. Appl. Artif. Intell. 68, 53–62 (2018)

    Article  Google Scholar 

  15. Wang, L., Yang, B., Chen, Y., Zhang, X., Orchard, J.: Improving neural-network classifiers using nearest neighbor partitioning. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2255–2267 (2017)

    Article  MathSciNet  Google Scholar 

  16. Xu, S., Liu, K., Li, X.: A fuzzy process neural network model and its application in process signal classification. Neurocomputing 335, 1–8 (2019)

    Article  Google Scholar 

  17. Huang, W., Oh, S., Pedrycz, W.: Fuzzy wavelet polynomial neural networks: analysis and design. IEEE Trans. Fuzzy Syst. 25(5), 1329–1341 (2017)

    Article  Google Scholar 

  18. Zhang, H., Liu, J., Ma, D., Wang, Z.: Data-core-based fuzzy min–max neural network for pattern classification. IEEE Trans. Neural Netw. 22(12), 2339–2352 (2011)

    Article  Google Scholar 

  19. Chen, C.L.P., Liu, Z.: Broad learning system: an effective and efficient incremental learning system without the need for deep architecture. IEEE Trans. Neural Netw. Learning Syst. 29(1), 10–24 (2018)

    Article  MathSciNet  Google Scholar 

  20. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 2(1), 263–286 (1995)

    Article  MATH  Google Scholar 

  21. Bagheri, M.A., Gao, Q., Escalera, S.: A genetic-based subspace analysis method for improving error-correcting output coding. Pattern Recognit. 46(10), 2830–2839 (2013)

    Article  Google Scholar 

  22. Lachaize, M., Hrgarat-Mascle, S.L., Aldea, E., Maitrot, A., Reynaud, R.: Evidential framework for error correcting output code classification. Eng. Appl. Artif. Intell. 73, 10–21 (2018)

    Article  Google Scholar 

  23. Yu, Z., Liu, Y., Yu, X., Pu, K.Q.: Scalable distributed processing of k nearest neighbor queries over moving objects. IEEE Trans. Knowl. Data Eng. 354(12), 4719–4738 (2015)

    Google Scholar 

  24. Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  25. Yang, M.-C., Wang, J.-Z., Sun, T.-Y.: Emd-based preprocessing with a fuzzy inference system and a fuzzy neural network to identify kiln coating collapse for predicting refractory failure in the cement process. Int. J. Fuzzy Syst. 20(8), 2640–2656 (2018)

    Article  Google Scholar 

  26. Chen, Y., Zhang, Y., Shu, H., Yang, J., Luo, L., Coatrieux, J., Feng, Q.: Structure-adaptive fuzzy estimation for random-valued impulse noise suppression. IEEE Trans. Circuits Syst. Video Technol. 28(2), 414–427 (2018)

    Article  Google Scholar 

  27. Huang, Y.-P., Singh, A., Liu, S.-I., Wu, S.-I., Quoc, H.A., Sereter, A.: Developing transformed fuzzy neural networks to enhance medical data classification accuracy. Int. J. Fuzzy Syst. 20(6), 1925–1937 (2018)

    Article  Google Scholar 

  28. Kulkarni, A.D., Cavanaugh, C.D.: Fuzzy neural network models for classification. Appl. Intell. 12(3), 207–215 (2000)

    Article  Google Scholar 

  29. Hoomod, H. K., abd ali, A.: Fuzzy-cellular neural network for face recognition HCI authentication. In: Journal of Physics: Conference Series, vol. 1003, pp. 12–33 (2018)

  30. Chatzarakis, T.L.G.E.: Oscillation criteria for delay and advanced differential equations with nonmonotone arguments. Complexity 2018, 1–18 (2018)

    Article  MATH  Google Scholar 

  31. Mohammed, M.F., Lim, C.P.: An enhanced fuzzy min–max neural network for pattern classification. IEEE Trans. Neural Netw. Learn. Syst. 26(3), 417–429 (2015)

    Article  MathSciNet  Google Scholar 

  32. Davtalab, R., Dezfoulian, M.H., Mansoorizadeh, M.: Multi-level fuzzy min–max neural network classifier. IEEE Trans. Neural Netw. Learn. Syst. 25(3), 470–482 (2014)

    Article  Google Scholar 

  33. Melin, P., Miramontes, I., Prado-Arechiga, G.: A hybrid model based on modular neural networks and fuzzy systems for classification of blood pressure and hypertension risk diagnosis. Expert Syst. Appl. 107, 146–164 (2018)

    Article  Google Scholar 

  34. Liu, S., Wang, L., Yang, B., Kong, S., Dong, H., Zhu, X.: Fuzzy nearest neighbor partitioning neural network for classification. In: 2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC). IEEE, New York, (2018)

  35. Liu, H., Li, S., Li, G., Wang, H.: Adaptive controller design for a class of uncertain fractional-order nonlinear systems: an adaptive fuzzy approach. Int. J. Fuzzy Syst. 20(2), 366–379 (2018)

    Article  MathSciNet  Google Scholar 

  36. Zhou, J., Chen, L., Chen, C.P., Zhang, Y., Li, H.X.: Fuzzy clustering with the entropy of attribute weights. Neurocomputing 198, 125–134 (2016)

    Article  Google Scholar 

  37. Wang, N., Sun, Z., Zheng, Z., Zhao, H.: Finite-time sideslip observer-based adaptive fuzzy path-following control of underactuated marine vehicles with time-varying large sideslip. Int. J. Fuzzy Syst. 20(6), 1767–1778 (2018)

    Article  MathSciNet  Google Scholar 

  38. Chen, H.-L., Yang, B., Wang, G., Liu, J., Xu, X., Wang, S.-J., Liu, D.-Y.: A novel bankruptcy prediction model based on an adaptive fuzzy k-nearest neighbor method. Knowl. Based Syst. 24(8), 1348–1359 (2011)

    Article  Google Scholar 

  39. Jensen, R., Cornelis, C.: Fuzzy-rough nearest neighbour classification. In: Peters, J.F., Skowron, A., Chan, C.C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) Transactions on Rough Sets XIII, pp. 56–72. Springer, Berlin (2011)

    Chapter  Google Scholar 

  40. Derrac, J., Garcia, S., Herrera, F.: Fuzzy nearest neighbor algorithms: taxonomy, experimental analysis and prospects. Inf. Sci. 260, 98–119 (2014)

    Article  Google Scholar 

  41. Wang, L., Yang, B., Wang, S., Liang, Z.: Building image feature kinetics for cement hydration using gene expression programming with similarity weight tournament selection. IEEE Tran. Evol. Comput. 19(5), 679–693 (2015)

    Article  Google Scholar 

  42. Chen, C.L.P., Zhang, T., Chen, L., Tam, S.C.: I-ching divination evolutionary algorithm and its convergence analysis. IEEE Trans. Cybern. 47(1), 2–13 (2017)

    Article  Google Scholar 

  43. Zhang, T., Chen, C.L.P., Chen, L., Xu, X., Hu, B.: Design of highly nonlinear substitution boxes based on i-ching operators. IEEE Trans. Cybern. 48(12), 3349–3358 (2018)

    Article  Google Scholar 

  44. Wang, L., Orchard, J.: Investigating the evolution of a neuroplasticity network for learning. IEEE Trans. Syst. Man Cybern. Syst. 1–13 (2018)

  45. Sarkar, M.: Fuzzy-rough nearest neighbor algorithms in classification. Fuzzy Sets Syst. 158(19), 2134–2152 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, L., Yang, B., Orchard, J.: Particle swarm optimization using dynamic tournament topology. Appl. Soft Comput. 48, 584–596 (2016)

    Article  Google Scholar 

  47. Bohner, M., Hassan, T.S., Li, T.: Fite–Hille–Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments. Indagationes Mathematicae 29(2), 548–560 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. Han, S.-Y., Chen, Y.-H., Tang, G.-Y.: Fault diagnosis and fault-tolerant tracking control for discrete-time systems with faults and delays in actuator and measurement. J. Frankl. Inst. 354(12), 4719–4738 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant Nos. 61573166, 61572230, 61872419, 61873324, 81671785, 61672262; project of Shandong Province Higher Educational Science and Technology Program under Grant No. J16LN07; Shandong Provincial Natural Science Foundation Nos. ZR2019MF040, ZR2018LF005; Shandong Provincial Key R&D Program under Grant Nos. 2019GGX101041, 2018GGX101048, 2016ZDJS01A12, 2016GGX101001, 2017CXZC1206; and Taishan Scholar Project of Shandong Province, China. An earlier version of this work was presented at the 2018 International Conference on Security, Pattern Analysis, and Cybernetics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Wang, L. & Yang, B. An Improved Neural Network Classifier Using Fuzzy Nearest Neighbor Partitioning Method. Int. J. Fuzzy Syst. 21, 2270–2282 (2019). https://doi.org/10.1007/s40815-019-00724-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00724-9

Keywords

Navigation