Abstract
This paper presents a nonlinear tracking control approach for a two-degree-of-freedom serial manipulator. The design goal is to achieve a guaranteed \(\mathcal {H}_{\infty }\) tracking performance while keeping the designed controller as simple as possible for real-time implementation. To this end, the descriptor Takagi–Sugeno fuzzy modeling is used to describe the nonlinear dynamics of the robot. Then, based on Lyapunov stability theory, we propose conditions to design fuzzy controllers for trajectory tracking purposes. The control design procedure is reformulated as an optimization problem under linear matrix inequality constraints which can be effectively solved with semidefinite programming technique. Numerical experiments carried out with the Simscape Multibody™ library of MATLAB® clearly demonstrate the effectiveness of the proposed approach in terms of tracking control and numerical simplicity.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Lu, X.-G., Liu, M., Liu, J.-X.: Design and optimization of interval type-2 fuzzy logic controller for delta parallel robot trajectory control. Int. J. Fuzzy Syst. 19(1), 190–206 (2017)
Pan, Y., Wang, H., Li, X., Yu, H.: Adaptive command-filtered backstepping control of robot arms with compliant actuators. IEEE Trans. Control Syst. Technol. 26(3), 1149–1156 (2018)
Nojavanzadeh, D., Badamchizadeh, M.: Adaptive fractional-order non-singular fast terminal sliding mode control for robot manipulators. IET Control Theory Appl. 10(13), 1565–1572 (2016)
Tsai, C.-C., Cheng, M.-B., Lin, S.-C.: Robust tracking control for a wheeled mobile manipulator with dual arms using hybrid sliding-mode neural network. Asian J. Control 9(4), 377–389 (2007)
Huang, H.-C., Chiang, C.-H.: Backstepping holonomic tracking control of wheeled robots using an evolutionary fuzzy system with qualified ant colony optimization. Int. J. Fuzzy Syst. 18(1), 28–40 (2016)
Ouyang, P., Acob, J., Pano, V.: PD with sliding mode control for trajectory tracking of robotic system. Robot. Comput. Integr. Manuf. 30(2), 189–200 (2014)
Hedberg, E., Norrlöf, M., Moberg, S., Gunnarsson, S.: Comparing feedback linearization and Jacobian linearization for LQ control of an industrial manipulator. In: Proceedings 12th IFAC Symposium Robot Control (2018)
Pi, Y., Wang, X.: Trajectory tracking control of a 6-DOF hydraulic parallel robot manipulator with uncertain load disturbances. Control Eng. Pract. 19(2), 185–193 (2011)
Jafarov, E.M., Parlakci, M.A., Istefanopulos, Y.: A new variable structure PID-controller design for robot manipulators. IEEE Trans. Control Syst. Technol. 13(1), 122–130 (2005)
Purwar, S., Kar, I.N., Jha, A.N.: Adaptive output feedback tracking control of robot manipulators using position measurements only. Expert Syst. Appl. 34(4), 2789–2798 (2008)
Hu, Q., Xu, L., Zhang, A.: Adaptive backstepping trajectory tracking control of robot manipulator. J. Franklin Inst. 349(3), 1087–1105 (2012)
Pan, Y., Yu, H.: Composite learning robot control with guaranteed parameter convergence. Automatica 89, 398–406 (2018)
Tseng, C.-S., Chen, B.-S., Uang, H.-J.: Fuzzy tracking control design for nonlinear dynamic systems via T–S fuzzy model. IEEE Trans. Fuzzy Syst. 9(3), 381–392 (2001)
Nguyen, A.-T., Dambrine, M., Lauber, J.: Lyapunov-based robust control design for a class of switching non-linear systems subject to input saturation: application to engine control. IET Control Theory Appl. 8, 1789–1802 (2014)
Vermeiren, L., Dequidt, A., Afroun, M., Guerra, T.-M.: Motion control of planar parallel robot using the fuzzy descriptor system approach. ISA Trans. 51(5), 596–608 (2012)
Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man, Cybern. B, Cybern. SMC–15(1), 116–132 (1985)
Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. John Wiley & Sons, Hoboken (2004)
Zhang, H., Liu, D.: Fuzzy Modeling and Fuzzy Control. Birkhauser, Basel (2006)
Lilly, J.H.: Fuzzy Control and Identification. John Wiley & Sons Inc, Hoboken (2010)
Lendek, Z., Guerra, T.M., Babuška, R., De Schutter, B.: Stability Analysis and Nonlinear Observer Design Using Takagi–Sugeno Fuzzy Models, vol. 262. Springer, Berlin, Heidelberg (2011)
Nguyen, A.-T., Taniguchi, T., Eciolaza, L., Campos, V., Palhares, R., Sugeno, M.: Fuzzy control systems: past, present and future. IEEE Comput. Intell. Mag. 14(1), 56–68 (2019)
Nguyen, A.-T., Sentouh, C., Popieul, J.-C.: Driver-automation cooperative approach for shared steering control under multiple system constraints: design and experiments. IEEE Trans. Ind. Electron. 64(5), 3819–3830 (2017)
Chen, B.-S., Wu, C.-H.: Robust optimal reference-tracking design method for stochastic synthetic biology systems: T–S fuzzy approach. IEEE Trans. Fuzzy Syst. 18(6), 1144–1159 (2010)
Hu, X., Wu, L., Hu, C., Gao, H.: Fuzzy guaranteed cost tracking control for a flexible air-breathing hypersonic vehicle. IET Control Theory Appl. 6(9), 1238–1249 (2012)
Hung, C.-Y., Liu, P., Lian, K.-Y.: Fuzzy virtual reference model sensorless tracking control for linear induction motors. IEEE Trans. Cybern. 43(3), 970–981 (2013)
Taniguchi, T., Tanaka, K., Wang, H.O.: Fuzzy descriptor systems and nonlinear model following control. IEEE Trans. Fuzzy Syst. 8(4), 442–452 (2000)
Spong, M.W.: Modeling and control of elastic joint robots. J. Dyn. Syst. Meas. Control 109(4), 310–318 (1987)
Andersson, S., Söderberg, A., Björklund, S.: Friction models for sliding dry, boundary and mixed lubricated contacts. Tribol. Int. 40(4), 580–587 (2007)
Makarov, M., Grossard, M., Rodríguez-Ayerbe, P., Dumur, D.: Modeling and preview \(H_\infty \) control design for motion control of elastic-joint robots with uncertainties. IEEE Trans. Ind. Electron. 63(10), 6429–6438 (2016)
van der Schaft, A.J.: \(\cal{L}_2-\)gain analysis of nonlinear systems and nonlinear state-feedback \(\cal{H}_\infty \) control. IEEE Trans. Autom. Control 37(6), 770–784 (1992)
Guerra, T.M., Bernal, M., Guelton, K., Labiod, S.: Non-quadratic local stabilization for continuous-time Takagi–Sugeno models. Fuzzy Sets Syst. 201, 40–54 (2012)
Nguyen, A.-T., Márquez, R., Guerra, T.-M., Dequidt, A.: Improved lmi conditions for local quadratic stabilization of constrained Takagi–Sugeno fuzzy systems. Int. J. Fuzzy Syst. 19(1), 225–237 (2017)
Nguyen, A.-T., Márquez, R., Dequidt, A.: An augmented system approach for LMI-based control design of constrained Takagi–Sugeno fuzzy systems. Eng. Appl. Artif. Intell. 61, 96–102 (2017)
Löfberg, J.: YALMIP: A toolbox for modeling and optimization in MATLAB, In: IEEE Int. Symp. Comput. Aided Control Syst. Des., Taipei, pp. 284–289 (2004)
Toh, K., Todd, M., Tutuncu, R.: SDPT3—a Matlab software package for semidefinite programming, version 1.3. Optim. Methods Softw. 11, 545–581 (1999)
Nguyen, A.-T., Sentouh, C., Popieul, J.: Sensor reduction for driver-automation shared steering control via an adaptive authority allocation strategy. IEEE/ASME Trans. Mechatron. 23(1), 5–16 (2018)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nguyen, VA., Nguyen, AT., Dequidt, A. et al. Nonlinear Tracking Control with Reduced Complexity of Serial Robots: A Robust Fuzzy Descriptor Approach. Int. J. Fuzzy Syst. 21, 1038–1050 (2019). https://doi.org/10.1007/s40815-019-00613-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-019-00613-1