[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Chaotic Interval Type-2 Fuzzy Neuro-oscillatory Network (CIT2-FNON) for Worldwide 129 Financial Products Prediction

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, the author proposes an innovative Chaotic Interval Type-2 Fuzzy Neuro-oscillatory Network (CIT2-FNON) for worldwide financial prediction. Inspired by the author’s original work on Lee-oscillator—a chaotic discrete-time neural oscillator with profound transient-chaotic property, CIT2-FNON provides: (1) effective modeling of Interval Type-2 Fuzzy Logic with Chaotic Transient-Fuzzy Membership Function (CTFMF); and (2) time-series recurrent neural network training and prediction with Chaotic Bifurcation Transfer Function (CBTF). Different from the contemporary research on Type-2 Fuzzy Logic Systems (T2FLS) which mainly focus on the R&D of the Interval Type-2 Fuzzy Logic (IT2FL)—a simplified version of T2FLS due to its computational complexity, the main innovation of this paper include: (1) the Chaotic Type-2 Transient-Fuzzy Logic (CT2TFL) proposed in this paper provides a truly T2FLS with remarkable chaotic transient-fuzzy property to resolve the computational complexity problem; and (2) different from contemporary fuzzy-neuro systems which focus on the integration of fuzzy logic and neural networks as separated functional modules, the CIT2-FNON introduced in this paper is constructed by Lee-oscillators which serves as “transient-fuzzy input neurons” of the recurrent network and effectively converts it into CT2TFL system. In other words, the chaotic transient-fuzzification process is actually part of the neural model of the CIT2-FNON. From the implementation perspective, CIT2-FNON is integrated with 2048-trading day time-series financial data and Top-10 major financial signals as financial fuzzy signals (FFS) for the real-time prediction of 129 worldwide financial products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bai, C., Shi, B., Liu, F., Sarkis, J.: Banking credit worthiness: evaluating the complex relationships. Omega 83, 26–38 (2019)

    Article  Google Scholar 

  2. Baklouti, N., Abraham, A., Alimi, A.M.: A Beta basis function interval type-2 fuzzy neural network for time series applications. Eng. Appl. Artif. Intell. 71, 259–274 (2018)

    Article  Google Scholar 

  3. Bhattacharya, D., Konar, A.: Self-adaptive type-1/type-2 hybrid fuzzy reasoning techniques for two-factored stock index time-series prediction. Soft. Comput. 22(18), 6229–6246 (2018)

    Article  Google Scholar 

  4. Borden, C.: Fibonacci Trading: How to Master the Time and Price Advantage. McGraw-Hill Education, New York (2018)

    Google Scholar 

  5. Brown, C.: Elliot Wave Principle: Elementary Concepts, Wave Patterns, and Practice Exercises. Bloomberg Press, New York (2012)

    Book  Google Scholar 

  6. Bulkowski, T.N.: Encyclopedia of Chart Patterns. Wiley, Hoboken (2005)

    Google Scholar 

  7. Chai, N., Wu, B., Yang, W. and Shi, B.: A multicriteria approach for modeling small enterprise credit rating: evidence from China. Emerg. Mark. Financ. Trade 55(11), 1–21 (2019)

    Google Scholar 

  8. Chang, P.C., Wang, D., Zhou, C.: A novel model by evolving partially connected neural network for stock price trend forecasting. Expert Syst. Appl. 39(1), 611–620 (2012)

    Article  Google Scholar 

  9. Chen, L., Aihara, K.: Chaotic stimulated annealing by a neural model with transient chaos. Neural Netw. 8(6), 915–930 (1995)

    Article  Google Scholar 

  10. Dabhi, V.K., Chaudhary, S.: Financial time-series modeling and prediction using postfix-GP. Comput. Econ. 47(2), 219–253 (2016)

    Article  Google Scholar 

  11. Dai, W., Wu, J., Lu, Y.: Combining nonlinear independent component analysis and neural network for the prediction of Asian stock market indexes. Expert Syst. Appl. 39(4), 4444–4452 (2012)

    Article  Google Scholar 

  12. Gonzalez, J.A.R., Solis, J.F., Huacuja, H.J.F., Barbosa, J.J.G., Rangel, R.: Fuzzy GA-SVR for Mexican stock exchange’s financial time-series forecast with online parameter tuning. Int. J. Comb. Optim. Prob. Inf. 10(1), 41–50 (2019)

    Google Scholar 

  13. http://www.metatrader4.com

  14. http://qffc.org

  15. http://Forex.com

  16. http://AvaTrader.com

  17. Han, M., Zhong, K., Han, B.: Interval type-2 fuzzy neural networks for chaotic time-series prediction: a concise overview. IEEE Trans. Cybern. 99, 1–12 (2018)

    Google Scholar 

  18. Henrique, B.M., Sobreiro, V.A., Kimura, H.: Stock price prediction using support vector regression on daily and up to the minute prices. J. Financ. Data Sci. 4(3), 183–201 (2018)

    Article  Google Scholar 

  19. Hermann, H., Patricio, F.V.: Fuzzy hybrid system for forecasting financial time-series. Aestimatio 11, 78–91 (2015)

    Article  Google Scholar 

  20. Jiang, et al.: An interval type-2 fuzzy logic system for stock index forecasting based on fuzzy time series and a fuzzy logical relationship map. IEEE Access 6, 69107–69119 (2018)

    Article  Google Scholar 

  21. Lee, R.S.T.: A transient-chaotic auto-associative network (TCAN) based on LEE-oscillators. IEEE Trans. Neural Netw. 15(5), 1228–1243 (2004)

    Article  Google Scholar 

  22. Lee, R.S.T.: iJADE stock advisor: an intelligent agent based stock prediction system using hybrid RBF recurrent network. IEEE Trans. Syst. Man Cybern. (Part A) 34(3), 421–428 (2004)

    Article  Google Scholar 

  23. Lee, R.S.T.: LEE-Associator—a transient chaotic autoassociative network for progressive memory recalling. Neural Netw. 19(5), 644–666 (2006)

    Article  MATH  Google Scholar 

  24. Lee, R.S.T.: Fuzzy-Neuro Approach to Agent Applications (From the AI Perspective to Modern Ontology). Springer-Verlag, Germany (2006)

    MATH  Google Scholar 

  25. Lee, R.S.T., Liu, J.N.K.: Scene analysis using an integrated composite neural oscillatory elastic graph matching model. Pattern Recogn. 35, 1835–1846 (2002)

    Article  MATH  Google Scholar 

  26. Lee, R. S. T.: Advanced Paradigms in artificial intelligence from neural oscillators, chaos theory to chaotic neural networks. Aust. Adv. Knowl. Int. 55(11), 303–380 (2005)

    Google Scholar 

  27. Ling, P.W.: The stock price forecasting comparative research of the use of fractal theory at Taiwan traditional industry and technology industry. Appl. Mech. Mater. 274, 53–56 (2003)

    Article  Google Scholar 

  28. Liu, F., Quek, C., Ng, G. S.: Neural network model for time-series prediction by reinforcement learning. In: 2005 IEEE International Joint Conference on Neural Networks vol. 2, pp. 809–814 (2005)

  29. Liu, J., Wu, C., Wang, Z., Wu, L.: Reliable filter design for sensor networks using type-2 fuzzy framework. IEEE Trans. Ind. Inf. 13(4), 1742–1752 (2017)

    Article  Google Scholar 

  30. Murphy, J.J.: Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods and Application. New York Institute of Finance, New York (1999)

    Google Scholar 

  31. Nahil, A., Lyhyaoui, A.: Short-term stock price forecasting using kernel principal component analysis and support vector machines: the case of Casablanca stock exchange. Procedia Comput. Sci. 127, 161–169 (2018)

    Article  Google Scholar 

  32. Ouahilal, M., Mohajir, M.E., Chahhou, M., Eddine, E.M.: A novel hybrid model based on Hodrick–Prescott filter and support vector regression algorithm for optimizing stock market price prediction. J. Big Data 4(1), 1–22 (2017)

    Article  Google Scholar 

  33. Pulido, M., Melin, P.: Optimization of ensemble neural networks with type-1 and type-2 fuzzy integration for Prediction of the Taiwan stock exchange. Stud. Fuzziness Soft Comput. 361, 151–164 (2018)

    Article  Google Scholar 

  34. Pulido, M., Melin, P., Castillo, O.: Particle swarm optimization of ensemble neural networks with Fuzzy aggregation for time series prediction of the Mexican Stock Exchange. Inf. Sci. 280, 188–204 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rubio, A., Bermúdez, J.D., Vercher, E.: Improving stock index forecasts by using a new weighted fuzzy-trend time-series method. Expert Syst. Appl. 76, 12–20 (2017)

    Article  Google Scholar 

  36. Sadaei, H.J.S., Enayatifar, R., Guimaraes, F.G., Mahmud, M., Alzamil, Z.A.: Combining ARFIMA models and fuzzy time-series for the forecast of long memory time-series. Neurocomputing 175, 782–796 (2016)

    Article  Google Scholar 

  37. Sanz, J.A., Bernardo, D., Herrera, F., Bustince, H., Hagras, H.: A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data. IEEE Trans. Fuzzy Syst. 23(4), 973–990 (2015)

    Article  Google Scholar 

  38. Singh, R., Srivastava, S.: Stock prediction using deep learning. Multimed. Tools Appl. 76(18), 18569–18584 (2017)

    Article  Google Scholar 

  39. Sumati, V., Patvardhan, C.: Interval type-2 mutual subsethood fuzzy neural inference system (IT2MSFuNIS). IEEE Trans. Fuzzy Syst. 26(1), 203–215 (2018)

    Article  Google Scholar 

  40. Sun, G., Xu, S., Li, Z.: Finite-time fuzzy sampled-data control for nonlinear flexible spacecraft with stochastic actuator failures. IEEE Trans. Ind. Electron. 64(5), 3851–3861 (2017)

    Article  Google Scholar 

  41. Wang, X.: Period-doublings to chaos in a simple neural network: an analytic proof. Complex Syst. 5, 425–441 (1991)

    MATH  Google Scholar 

  42. Wong, M. H. Y., Lee, R. S. T., Liu, J. N. K.: Wind shear forecasting by chaotic oscillatory-based neural networks (CONN) with Lee-Oscillator (Retrograde Signaling) Model. In: International Joint Conference on Neural Networks (IJCNN) 2040–2047 (2008)

  43. Xu, S., Sun, G., Ma, Z. & Li, X.: Fractional-order fuzzy sliding mode control for the deployment of tethered satellite system under input saturation. IEEE Trans. Aerosp. Electron. Syst. 55(11), 1–1 (2018)

    Article  Google Scholar 

  44. Ye, F., Zhang, L., Zhang, D., Fujita, H., Gong, Z.: A novel forecasting method based on multi-order fuzzy time-series and technical analysis. Inf. Sci. 367–368, 41–57 (2016)

    Article  Google Scholar 

  45. Yolcu, O.C., Yolcu, U., Egrioglu, E., Aladag, C.H.: High order fuzzy time-series forecasting method based on an intersection operation. Appl. Math. Model. 40, 8750–8765 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Forex.com and Avatrade.com for the provision of historical and real-time 120 + financial product data over their MT4 R&D and trading platforms. The author also wishes to thank Quantum Finance Forecast Center of UIC for the R&D supports and the provision of the channel and platform qffc.org for worldwide system testing and evaluation. This paper and research Project is supported by Research Grant R201948 of Beijing Normal University-Hong Kong Baptist University United International College (UIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond S. T. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, R.S.T. Chaotic Interval Type-2 Fuzzy Neuro-oscillatory Network (CIT2-FNON) for Worldwide 129 Financial Products Prediction. Int. J. Fuzzy Syst. 21, 2223–2244 (2019). https://doi.org/10.1007/s40815-019-00688-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00688-w

Keywords

Navigation