[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Impact of Fuzziness Measures on the Performance of Semi-supervised Learning

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Usage of fuzziness in the study of semi-supervised learning is relatively new. In this study, the divide-and-conquer strategy is used to investigate the performance of semi-supervised learning. To this end, testing dataset is divided into three categories, namely low, medium and high-fuzzy samples based on the magnitude of fuzziness of each sample. It is experimentally confirmed that if the low-fuzzy samples are added from the testing dataset to the original training dataset and the model is retrained, then the accuracy can be improved. To measure the amount of fuzziness of each sample, four different fuzziness measuring models are used in this study. Experimental results support that improvement of accuracy is dependent on which fuzziness measuring model is used to measure the fuzziness of each sample. Wilcoxon signed-rank test shows that choosing a specific fuzziness measuring model is significant or not. Finally, from the Wilcoxon signed-rank test, the best model is chosen, which can be used along with semi-supervised learning to improve its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Zhu, X., Goldberg, A.: Introduction to semi-supervised learning. Synth. Lect. Artif. Intell. Mach. Learn. 3(1), 1–130 (2009)

    Article  MATH  Google Scholar 

  2. Seeger, M.: Learning with Labeled and Unlabeled Data (Tech. Rep.). Edinburgh, UK: Institute for Adaptive and Neural Computation, University of Edinburgh (2000)

    Google Scholar 

  3. Chawla, N.V., Karakoulas, G.: Learing from labeled and unlabeled data: an empirical study across techniques and domain. J. Artif. Intell. Res. 23, 331–366 (2005)

    Article  MATH  Google Scholar 

  4. Zhou, Z.-H., Zhan, D.-C., Yang, Q.: Semi-supervised learning with very few labeled training examples. In: AAAI, pp. 675–680 (2007)

  5. Zadeh, L.A.: Probability measures of fuzzy events. J. Math. Anal. Appl. 23(2), 421–427 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  6. Miyato, T., Maeda, S., Ishii, S., Koyama, M.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. (2018). https://doi.org/10.1109/tpami.2018.2858821

    Google Scholar 

  7. Li, C., Zhu, J., Zhang, B.: Max-margin deep generative models for (semi-) supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 40(11), 2762–2775 (2018)

    Article  Google Scholar 

  8. Pratama, M., Lughofer, E., Lim, C.P., Rahayu, W., Dillon, T., Budiyono, A.: pClass+: a novel evolving semi-supervised classifier. Int. J. Fuzzy Syst. 19(3), 863–880 (2017)

    Article  Google Scholar 

  9. Zhou, W., Qiao, S., Yi, Y., Han, N., Chen, Y., Lei, G.: Automatic optic disc detection using low-rank representation based semi-supervised extreme learning machine. Int. J. Mach. Learn. Cybern. (2019). https://doi.org/10.1007/s13042-019-00939-0

    Google Scholar 

  10. Sang, N., Gan, H., Fan, Y., Wu, W., Yang, Z.: Adaptive safety degree-based safe semi-supervised learning. Int. J. Mach. Learn. Cybern. 10(5), 1101–1108 (2019)

    Article  Google Scholar 

  11. Ashfaq, R.A.R., Wang, X.-Z., Huang, J.Z., Abbas, H., He, Y.-L.: Fuzziness based semi-supervised learning approach for intrusion detection system. Inf. Sci. 378, 484–497 (2017)

    Article  Google Scholar 

  12. Luca, A., Termini, S.: A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory. Inf. Control 20(4), 301–312 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. Patwary, M.J.A., Akter, S., Mahmud, T.: An expert system to detect uterine cancer under uncertainty, IOSR J. Comput. Eng. (IOSR-JCE) 16(5), 36–47 (2014)

    Article  Google Scholar 

  14. Patwary, M.J.A., Rahman, M.O., Hossain, M.S.: Uncertainty handling in ship assessment: a case study of Bangladesh. J. Invest. Manag. 4(5), 152–161 (2015)

    Article  Google Scholar 

  15. Sanchez, D., Trillas, E.: Measures of fuzziness under different uses of fuzzy sets. In: International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 25–34. Springer (2012)

  16. Ralescu, D., Adams, G.: The fuzzy integral. J. Math. Anal. Appl. 75(2), 562–570 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, Z.-X.: Fuzzy measures and measures of fuzziness. J. Math. Anal. Appl. 104(2), 589–601 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Farhadinia, B., Xu, Z.: Entropy measures for hesitant fuzzy sets and their extensions. In: Information Measures for Hesitant Fuzzy Sets and Their Extensions. Uncertainty and Operations Research, pp. 69-102. Springer, Singapore (2019)

    Chapter  Google Scholar 

  19. Jozsef, D., Lorant, P.: Measures of fuzziness. Ann. Universitasis Scientiarium Budapestinensis Sect. Computatorica 12, 69–78 (1991)

    MathSciNet  MATH  Google Scholar 

  20. Li, W., Pedrycz, W., Xue, X., Xu, W., Fan, B.: Fuzziness and incremental information of disjoint regions in double-quantitative decision-theoretic rough set model. Int. J. Mach. Learn. Cybern. (2018). https://doi.org/10.1007/s13042-018-0893-7

    Google Scholar 

  21. Kaufmann, A.: Introduction to the Theory of Fuzzy Subsets, vol. 1. Academic Press, Cambridge (1975)

    MATH  Google Scholar 

  22. Ebanks, B.R.: On measures of fuzziness and their representations. J. Math. Anal. Appl. 94(1), 24–37 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Scudder, H.: Probability of error of some adaptive pattern-recognition machines. IEEE Trans. Inf. Theory 11(3), 363–371 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ma, M., Deng, T., Wang, N., Chen, Y.: Semi-supervised rough fuzzy Laplacian Eigenmaps for dimensionality reduction. Int. J. Mach. Learn. Cybernet. 10(2), 397–411 (2019)

    Article  Google Scholar 

  25. Wei, S., Li, Z., Zhang, C.: Combined constraint-based with metric-based in semi-supervised clustering ensemble. Int. J. Mach. Learn. Cybernet. 9(7), 1085–1100 (2018)

    Article  Google Scholar 

  26. Huang, R., Zhang, G., Chen, J.: Semi-supervised discriminant Isomap with application to visualization, image retrieval and classification. Int. J. Mach. Learn. Cybern. 10(6), 1269–1278 (2019)

    Article  Google Scholar 

  27. Uddin, M.T., Patwary, M.J.A., Ahsan, T., Alam, M.S.: Predicting the popularity of online news from content metadata. In: International Conference on Innovations in Science, Engineering and Technology (ICISET), pp. 1–5 (2016)

  28. Patwary, M.J.A., Hossain, S.: Risk analysis of buildings using an expert system: a case study in Bangladesh. In: International Conference on Advances in Electrical Engineering (ICAEE), pp. 141–144 (2015)

  29. Yu, Y., Ji, Z., Li, X., Guo, J., Zhang, Z., Ling, H., Wu, F.: Transductive zero-shot learning with a self-training dictionary approach. IEEE Trans. Cybernet. 99, 1–12 (2018)

    Google Scholar 

  30. Wu, D., Shang, M., Luo, X., Xu, J., Yan, H., Deng, W., Wang, G.: Self-training semi-supervised classification based on density peaks of data. Neurocomputing 275, 180–191 (2018)

    Article  Google Scholar 

  31. Yarowsky, D.: Unsupervised word sense disambiguation rivaling supervised methods. In: Proceedings of the 33rd annual meeting on Association for Computational Linguistics, Association for Computational Linguistics, pp. 189–196 (1995)

  32. Riloff, E., Wiebe, J., Wilson, T.: Learning subjective nouns using extraction pattern bootstrapping. In: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003-Volume 4, Association for Computational Linguistics, pp. 25–32 (2003)

  33. Abdelgayed, T.S., Morsi, W.G., Sidhu, T.S.: Fault detection and classification based on co-training of semisupervised machine learning. IEEE Trans. Ind. Electron. 65(2), 1595–1605 (2018)

    Article  Google Scholar 

  34. Hu, T., Huang, X., Li, J., Zhang, L.: A novel co-training approach for urban land cover mapping with unclear Landsat time series imagery. Remote Sens. Environ. 217, 144–157 (2018)

    Article  Google Scholar 

  35. Maeireizo, B., Litman, D., Hwa, R.: Co-training for predicting emotions with spoken dialogue data. In: Proceedings of the ACL 2004 on Interactive Poster and Demonstration Sessions, Association for Computational Linguistics, p. 28 (2004)

  36. Nie, F., Cai, G., Li, J., Li, X.: Auto-weighted multi-view learning for image clustering and semi-supervised classification. IEEE Trans. Image Process. 27(3), 1501–1511 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Jing, P., Su, Y., Nie, L., Bai, X., Liu, J., Wang, M.: Low-rank multi-view embedding learning for micro-video popularity prediction. IEEE Trans. Knowl. Data Eng. 30(8), 1519–1532 (2018)

    Article  Google Scholar 

  38. Zhou, Z.-H., Li, M.: Tri-training: exploiting unlabeled data using three classifiers. IEEE Trans. Knowl. Data Eng. 17(11), 1529–1541 (2005)

    Article  Google Scholar 

  39. Kim, D., Seo, D., Cho, S., Kang, P.: Multi-co-training for document classification using various document representations: TF-IDF, LDA, and Doc2Vec. Inf. Sci. 477, 15–29 (2019)

    Article  Google Scholar 

  40. Li, D., Dick, S.: Residential household non-intrusive load monitoring via graph-based multi-label semi-supervised learning. IEEE Trans. Smart Grid (2018). https://doi.org/10.1109/TSG.2018.2865702

    Google Scholar 

  41. Gan, H., Li, Z., Wu, W., Luo, Z., Huang, R.: Safety-aware graph-based semi-supervised learning. Expert Syst. Appl. 107, 243–254 (2018)

    Article  Google Scholar 

  42. Zhou, D., Huang, J., Scholkopf, B.: Learning from labeled and unlabeled data on a directed graph. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 1036–1043. ACM (2005)

  43. Blum, A., Chawla, S.: Learning from labeled and unlabeled data using graph mincuts [C]. In: Proceedings of the Eighteenth International Conference on Machine Learning (ICML 2001), Morgan Kaufmann Publishers Inc., Williams College, Williamstown, MA, USA, June 28–July 1 (2001)

  44. Wang, X., He, Y.: Learning from uncertainty for big data: future analytical challenges and strategies. IEEE Syst. Man Cybernet. Mag. 2(2), 26–31 (2016)

    Article  Google Scholar 

  45. Patwary, M.J.A., Wang, X.-Z.: Sensitivity analysis on initial classifier accuracy in fuzziness based semi-supervised learning. Inf. Sci. 490, 93–112 (2019)

    Article  Google Scholar 

  46. Wang, X.-Z., Ashfaq, R.A.R., Fu, A.-M.: Fuzziness based sample categorization for classifier performance improvement. J. Intell. Fuzzy Syst. 29(3), 1185–1196 (2015)

    Article  MathSciNet  Google Scholar 

  47. Keller, J.M., Gray, M.R., Givens, J.A.: A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybernet. 4, 580–585 (1985)

    Article  Google Scholar 

  48. Huang, G.-B., Chen, L., Siew, C.K., et al.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006)

    Article  Google Scholar 

  49. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Article  Google Scholar 

  50. Huang, G.-B., Wang, D.H., Lan, Y.: Extreme learning machines: a survey. Int. J. Mach. Learn. Cybernet. 2(2), 107–122 (2011)

    Article  Google Scholar 

  51. Liu, J., Patwary, M.J., Sun, X., Tao, K.: An experimental study on symbolic extreme learning machine. Int. J. Mach. Learn. Cybernet. 10(4), 787–797 (2019)

    Article  Google Scholar 

  52. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83 (1945)

    Article  Google Scholar 

  53. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  54. Frank, A.: Uci machine learning repository. University of California, School of Information and Computer Science (2010). http://archive.ics.uci.edu/ml. Accessed 10 Dec 2018

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grants 61772344, 61732011, 71371063 and 61811530324) and in part by Basic Research Project of Knowledge Innovation Program in ShenZhen (JCYJ20180305125850156).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammed J. A. Patwary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patwary, M.J.A., Wang, XZ. & Yan, D. Impact of Fuzziness Measures on the Performance of Semi-supervised Learning. Int. J. Fuzzy Syst. 21, 1430–1442 (2019). https://doi.org/10.1007/s40815-019-00666-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00666-2

Keywords

Navigation