[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Effect of cabergoline monotherapy in Cushing’s disease: an individual participant data meta-analysis

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Context

The primary treatment of choice for Cushing’s disease (CD) is the removal of the pituitary adenoma by transsphenoidal surgery (TSS). The surgical failure is seen in up to 75% of cases depending on the experience of the surgeon in different studies. Medical therapy is one of the options for the treatment of recurrent or persistent CD.

Methodology

The primary outcome of this meta-analysis was to find the proportion of patients achieving normalisation of 24-h urinary free cortisol (remission of CD) following cabergoline monotherapy. Literature search was conducted in January 2018 in PubMed/MEDLINE database from its date of inception to 31st December 2017. The search strategy used was “[(cushing) OR Cushing’s] AND cabergoline”. Individual participant data were extracted from the included studies and risk of bias was analysed by review checklist proposed by MOOSE.

Results

The individual participant data of 124 patients from six observational studies were included in this meta-analysis. 92 patients (74.2%) had past pituitary surgery. The proportion of patients achieving remission of CD with cabergoline monotherapy was 39.4% (95% confidence interval 0.31–0.49; P = 0.026). The previous surgery [odds ratio (OR) 28.4], duration of cabergoline monotherapy (OR 1.31) and maximum cabergoline dose (OR 0.19) were predictors for remission of CD. Mild and severe side effects were reported in 37.3% and 5.6% of patients, respectively, during cabergoline monotherapy.

Conclusions

This meta-analysis shows that cabergoline monotherapy is a reasonable alternative for subjects with persistent or recurrent CD after TSS. It can also be used in CD patients either as a bridge therapy while waiting for surgery or in those unwilling for surgery or have contraindication to it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACTH:

Adrenocorticotropic hormone

CD:

Cushing’s disease

CI:

Confidence interval

CS:

Cushing’s syndrome

D2R:

Type 2 dopamine receptor

DM:

Diabetes mellitus

DR:

Dopamine receptor

IPD:

Individual participant data

IQR:

Interquartile range

OR:

Odds ratio

SD:

Standard deviation

TSS:

Transsphenoidal surgery

UFC:

Urinary free cortisol

UNL:

Upper normal limit

References

  1. Newell-Price J, Bertagna X, Grossman AB, Nieman LK (2006) Cushing’s syndrome. Lancet 367:1605–1617. https://doi.org/10.1016/S0140-6736(06)68699-6

    Article  CAS  PubMed  Google Scholar 

  2. Pivonello R, De Martino MC, De Leo M et al (2008) Cushing’s Syndrome. Endocrinol Metab Clin North Am 37:135–149. https://doi.org/10.1016/j.ecl.2007.10.010

    Article  CAS  PubMed  Google Scholar 

  3. Mancini T, Kola B, Mantero F et al (2004) High cardiovascular risk in patients with Cushing’s syndrome according to 1999 WHO/ISH guidelines. Clin Endocrinol (Oxf) 61:768–777. https://doi.org/10.1111/j.1365-2265.2004.02168.x

    Article  Google Scholar 

  4. Pivonello R, Faggiano A, Lombardi G, Colao A (2005) The metabolic syndrome and cardiovascular risk in Cushing’s syndrome. Endocrinol Metab Clin North Am 34:327–339. https://doi.org/10.1016/j.ecl.2005.01.010

    Article  CAS  PubMed  Google Scholar 

  5. Resmini E, Minuto F, Colao A, Ferone D (2009) Secondary diabetes associated with principal endocrinopathies: the impact of new treatment modalities. Acta Diabetol 46:85–95. https://doi.org/10.1007/s00592-009-0112-9

    Article  CAS  PubMed  Google Scholar 

  6. Carolina Di Somma, Rosario Pivonello, Sandro Loche et al (2002) Severe impairment of bone mass and turnover in Cushing’s disease: comparison between childhood-onset and adulthood-onset disease. Clin Endocrinol (Oxf) 56:153–158. https://doi.org/10.1046/j.0300-0664.2001.01454.doc.x

    Article  Google Scholar 

  7. Feelders RA, Pulgar SJ, Kempel A, Pereira AM (2012) The burden of Cushing’s disease: clinical and health-related quality of life aspects. Eur J Endocrinol 167:311–326. https://doi.org/10.1530/EJE-11-1095

    Article  CAS  PubMed  Google Scholar 

  8. Graversen D, Vestergaard P, Stochholm K et al (2012) Mortality in Cushing’s syndrome: a systematic review and meta-analysis. Eur J Intern Med 23:278–282. https://doi.org/10.1016/j.ejim.2011.10.013

    Article  CAS  PubMed  Google Scholar 

  9. Nieman LK, Biller BMK, Findling JW et al (2015) Treatment of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 100:2807–2831. https://doi.org/10.1210/jc.2015-1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pivonello R, De Leo M, Cozzolino A, Colao A (2015) The treatment of Cushing’s disease. Endocr Rev 36:385–486. https://doi.org/10.1210/er.2013-1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Patil CG, Veeravagu A, Prevedello DM et al (2008) Outcomes after repeat transsphenoidal surgery for recurrent Cushing’s disease. Neurosurgery 63:266–271. https://doi.org/10.1227/01.neu.0000313117.35824.9f

    Article  PubMed  Google Scholar 

  12. Ambrogio AG, Cavagnini F (2016) Role of “old” pharmacological agents in the treatment of Cushing’s syndrome. J Endocrinol Invest 39:957–965. https://doi.org/10.1007/s40618-016-0462-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Melmed S, Casanueva FF, Hoffman AR et al (2011) Diagnosis and treatment of hyperprolactinemia: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96:273–288. https://doi.org/10.1210/jc.2010-1692

    Article  CAS  PubMed  Google Scholar 

  14. Sandret L, Maison P, Chanson P (2011) Place of cabergoline in acromegaly: a meta-analysis. J Clin Endocrinol Metab 96:1327–1335. https://doi.org/10.1210/jc.2010-2443

    Article  CAS  PubMed  Google Scholar 

  15. Delgado-López PD, Pi-Barrio J, Dueñas-Polo MT et al (2018) Recurrent non-functioning pituitary adenomas: a review on the new pathological classification, management guidelines and treatment options. Clin Transl Oncol. https://doi.org/10.1007/s12094-018-1868-6

    Article  PubMed  Google Scholar 

  16. Pivonello R, Ferone D, de Herder WW et al (2004) Dopamine receptor expression and function in corticotroph pituitary tumors. J Clin Endocrinol Metab 89:2452–2462. https://doi.org/10.1210/jc.2003-030837

    Article  CAS  PubMed  Google Scholar 

  17. Pivonello R, De Martino MC, Cappabianca P et al (2009) The medical treatment of Cushing’s disease: effectiveness of chronic treatment with the dopamine agonist cabergoline in patients unsuccessfully treated by surgery. J Clin Endocrinol Metab 94:223–230. https://doi.org/10.1210/jc.2008-1533

    Article  CAS  PubMed  Google Scholar 

  18. Godbout A, Manavela M, Danilowicz K et al (2010) Cabergoline monotherapy in the long-term treatment of Cushing’s disease. Eur J Endocrinol 163:709–716. https://doi.org/10.1530/EJE-10-0382

    Article  CAS  PubMed  Google Scholar 

  19. Vilar L, Naves LA, Azevedo MF et al (2010) Effectiveness of cabergoline in monotherapy and combined with ketoconazole in the management of Cushing’s disease. Pituitary 13:123–129. https://doi.org/10.1007/s11102-009-0209-8

    Article  CAS  PubMed  Google Scholar 

  20. Barbot M, Albiger N, Ceccato F et al (2014) Combination therapy for Cushing’s disease: effectiveness of two schedules of treatment: should we start with cabergoline or ketoconazole? Pituitary 17:109–117. https://doi.org/10.1007/s11102-013-0475-3

    Article  CAS  PubMed  Google Scholar 

  21. Burman P, Edén-Engström B, Ekman B et al (2016) Limited value of cabergoline in Cushing’s disease: a prospective study of a 6-week treatment in 20 patients. Eur J Endocrinol 174:17–24. https://doi.org/10.1530/EJE-15-0807

    Article  CAS  PubMed  Google Scholar 

  22. Ferriere A, Cortet C, Chanson P et al (2017) Cabergoline for Cushing’s disease: a large retrospective multicenter study. Eur J Endocrinol 176:305–314. https://doi.org/10.1530/EJE-16-0662

    Article  CAS  PubMed  Google Scholar 

  23. Lila AR, Gopal RA, Acharya SV et al (2010) Efficacy of cabergoline in uncured (persistent or recurrent) Cushing disease after pituitary surgical treatment with or without radiotherapy. Endocr Pract 16:968–976. https://doi.org/10.4158/EP10031.OR

    Article  PubMed  Google Scholar 

  24. Feelders RA, de Bruin C, Pereira AM et al (2010) Pasireotide alone or with cabergoline and ketoconazole in Cushing’s disease. N Engl J Med 362:1846–1848. https://doi.org/10.1056/NEJMc1000094

    Article  CAS  PubMed  Google Scholar 

  25. http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42018089806. Accessed 9 Mar 2018

  26. Stewart LA, Clarke M, Rovers M et al (2015) Preferred reporting items for systematic review and meta-analyses of individual participant data: the PRISMA-IPD statement. JAMA 313:1657–1665. https://doi.org/10.1001/jama.2015.3656

    Article  PubMed  Google Scholar 

  27. Stroup DF, Berlin JA, Morton SC et al (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) Group. JAMA 283:2008–2012

    Article  CAS  Google Scholar 

  28. Phan K, Tian DH, Cao C et al (2015) Systematic review and meta-analysis: techniques and a guide for the academic surgeon. Ann Cardiothorac Surg 4:112–122. https://doi.org/10.3978/j.issn.2225-319X.2015.02.04

    Article  PubMed  PubMed Central  Google Scholar 

  29. Elshafie O, Osman A, Aamer F et al (2012) Cushing’s Disease: sustained remission in five cases induced by medical therapy with the dopamine agonist cabergoline. Sultan Qaboos Univ Med J 12:493–497

    Article  Google Scholar 

  30. Geer EB, Shafiq I, Gordon MB et al (2017) Biochemical control during long-term follow-up of 230 adult patients with Cushing disease: a multicenter retrospective study. Endocr Pract 23:962–970. https://doi.org/10.4158/EP171787.OR

    Article  PubMed  Google Scholar 

  31. Espinosa-de-Los-Monteros AL, Sosa-Eroza E, Espinosa E et al (2017) Long-term outcome of the different treatment alternatives for recurrent and persistent Cushing disease. Endocr Pract 23:759–767. https://doi.org/10.4158/EP171756.OR

    Article  PubMed  Google Scholar 

  32. Illouz F, Dubois-Ginouves S, Laboureau S et al (2006) Use of cabergoline in persisting Cushing’s disease. Ann Endocrinol 67:353–356

    Article  CAS  Google Scholar 

  33. Carroll TB, Javorsky BR, Findling JW (2016) Postsurgical recurrent Cushing disease: clinical benefit of early intervention in patients with normal urinary free cortisol. Endocr Pract 22:1216–1223. https://doi.org/10.4158/EP161380.OR

    Article  PubMed  Google Scholar 

  34. Broersen LHA, Biermasz NR, van Furth WR et al (2018) Endoscopic vs. microscopic transsphenoidal surgery for Cushing’s disease: a systematic review and meta-analysis. Pituitary. https://doi.org/10.1007/s11102-018-0893-3

    Article  PubMed  PubMed Central  Google Scholar 

  35. Colao A, Petersenn S, Newell-Price J et al (2012) A 12-month Phase 3 study of pasireotide in cushing’s disease. N Engl J Med 366:914–924. https://doi.org/10.1056/NEJMoa1105743

    Article  CAS  PubMed  Google Scholar 

  36. Lacroix A, Gu F, Gallardo W et al (2018) Efficacy and safety of once-monthly pasireotide in Cushing’s disease: a 12 month clinical trial. Lancet Diabetes Endocrinol 6:17–26. https://doi.org/10.1016/S2213-8587(17)30326-1

    Article  CAS  PubMed  Google Scholar 

  37. Castinetti F, Guignat L, Giraud P et al (2014) Ketoconazole in Cushing’s disease: is it worth a try? J Clin Endocrinol Metab 99:1623–1630. https://doi.org/10.1210/jc.2013-3628

    Article  CAS  PubMed  Google Scholar 

  38. Baudry C, Coste J, Khalil RB et al (2012) Efficiency and tolerance of mitotane in Cushing’s disease in 76 patients from a single center. Eur J Endocrinol 167:473–481. https://doi.org/10.1530/EJE-12-0358

    Article  CAS  PubMed  Google Scholar 

  39. Nieman LK, Biller BMK, Findling JW et al (2008) The diagnosis of cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 93:1526–1540. https://doi.org/10.1210/jc.2008-0125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carrasco CA, Coste J, Guignat L et al (2008) Midnight salivary cortisol determination for assessing the outcome of transsphenoidal surgery in Cushing’s disease. J Clin Endocrinol Metab 93:4728–4734. https://doi.org/10.1210/jc.2008-1171

    Article  CAS  PubMed  Google Scholar 

  41. Colao A, Lombardi G, Annunziato L (2000) Cabergoline. Expert Opin Pharmacother 1:555–574. https://doi.org/10.1517/14656566.1.3.555

    Article  CAS  PubMed  Google Scholar 

  42. Missale C, Nash SR, Robinson SW et al (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225. https://doi.org/10.1152/physrev.1998.78.1.189

    Article  CAS  PubMed  Google Scholar 

  43. Lamberts SWJ, Lange SAD, Stefanko SZ (1982) Adrenocorticotropin-secreting pituitary adenomas originate from the anterior or the intermediate lobe in cushing’s disease: differences in the regulation of hormone secretion. J Clin Endocrinol Metab 54:286–291. https://doi.org/10.1210/jcem-54-2-286

    Article  CAS  PubMed  Google Scholar 

  44. de Bruin C, Pereira AM, Feelders RA et al (2009) Coexpression of dopamine and somatostatin receptor subtypes in corticotroph adenomas. J Clin Endocrinol Metab 94:1118–1124. https://doi.org/10.1210/jc.2008-2101

    Article  CAS  PubMed  Google Scholar 

  45. Stefaneanu L, Kovacs K, Horvath E et al (2001) Dopamine D2 receptor gene expression in human adenohypophysial adenomas. Endocrine 14:329–336

    Article  CAS  Google Scholar 

  46. van der Pas R, Feelders RA, Gatto F et al (2013) Preoperative normalization of cortisol levels in Cushing’s disease after medical treatment: consequences for somatostatin and dopamine receptor subtype expression and in vitro response to somatostatin analogs and dopamine agonists. J Clin Endocrinol Metab 98:E1880–1890. https://doi.org/10.1210/jc.2013-1987

    Article  CAS  PubMed  Google Scholar 

  47. Dali Yin, Sciji Kondo, Juji Takeuchi, Tatsuo Morimura (1994) Induction of apoptosis in murine ACTH-secreting pituitary adenoma cells by bromocriptine. FEBS Lett 339:73–75. https://doi.org/10.1016/0014-5793(94)80387-0

    Article  Google Scholar 

  48. Pivonello R, Ferone D, de Herder WW et al (2004) Dopamine receptor expression and function in human normal adrenal gland and adrenal tumors. J Clin Endocrinol Metab 89:4493–4502. https://doi.org/10.1210/jc.2003-031746

    Article  CAS  PubMed  Google Scholar 

  49. Schopohl J, Gu F, Rubens R et al (2015) Pasireotide can induce sustained decreases in urinary cortisol and provide clinical benefit in patients with Cushing’s disease: results from an open-ended, open-label extension trial. Pituitary 18:604–612. https://doi.org/10.1007/s11102-014-0618-1

    Article  CAS  PubMed  Google Scholar 

  50. Auriemma RS, Pivonello R, Ferreri L et al (2015) Cabergoline use for pituitary tumors and valvular disorders. Endocrinol Metab Clin North Am 44:89–97. https://doi.org/10.1016/j.ecl.2014.10.007

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Dr. A Tabarin, Dr. A Ferriere and Dr. Pia Burman for responding to our queries and sharing their patients’ data with us.

Author information

Authors and Affiliations

Authors

Contributions

JS and RP were involved in each of the following points: (1) design, (2) data collection, (3) analysis, and (4) writing manuscript. SS and HD were involved in each of the following points: (1) data collection, (2) quality assessment of articles, (3) analysis, and (4) reviewing manuscript. SSK was involved in each of the following points: (1) design, (2) analysis, (3) quality assessment of studies, and (4) reviewing manuscript. SK was involved in each of the following points: (1) design, (2) data collection, and (3) reviewing manuscript. All the authors approved the final version of this manuscript.

Corresponding author

Correspondence to J. Sahoo.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, informed consent was not necessary.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palui, R., Sahoo, J., Kamalanathan, S. et al. Effect of cabergoline monotherapy in Cushing’s disease: an individual participant data meta-analysis. J Endocrinol Invest 41, 1445–1455 (2018). https://doi.org/10.1007/s40618-018-0936-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-018-0936-7

Keywords

Navigation