[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Placental Malaria

  • The Placenta, Tropical Diseases, and Pregnancies (D Schwartz, Section Editor)
  • Published:
Current Tropical Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Placental malaria is the primary mechanism through which malaria in pregnancy causes adverse perinatal outcomes. This review summarizes recent work on the significance, pathogenesis, diagnosis, and prevention of placental malaria.

Recent Findings

Placental malaria, characterized by the accumulation of Plasmodium-infected red blood cells in the placental intervillous space, leads to adverse perinatal outcomes such as stillbirth, low birth weight, preterm birth, and small-for-gestational-age neonates. Placental inflammatory responses may be primary drivers of these complications. Associated factors contributing to adverse outcomes include maternal gravidity, timing of perinatal infection, and parasite burden.

Summary

Placental malaria is an important cause of adverse birth outcomes in endemic regions. The main strategy to combat this is intermittent preventative treatment in pregnancy; however, increasing drug resistance threatens the efficacy of this approach. There are studies dissecting the inflammatory response to placental malaria, alternative preventative treatments, and in developing a vaccine for placental malaria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Zakama AK, Gaw SL. Malaria in pregnancy: what the obstetric provider in nonendemic areas needs to know. Obstet Gynecol Surv. 2019;74:546–56. https://doi.org/10.1097/OGX.0000000000000704.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Feleke DG, Adamu A, Gebreweld A, Tesfaye M, Demisiss W, Molla G. Asymptomatic malaria infection among pregnant women attending antenatal care in malaria endemic areas of North-Shoa, Ethiopia: a cross-sectional study. Malar J. 2020;19:1–6. https://doi.org/10.1186/s12936-020-3152-9.

    Article  CAS  Google Scholar 

  3. Ismail MR, Ordi J, Menendez C, Ventura PJ, Aponte JJ, Kahigwa E, et al. Placental pathology in malaria: a histological, immunohistochemical, and quantitative study. Hum Pathol. 2000;31:85–93. https://doi.org/10.1016/S0046-8177(00)80203-8.

    Article  CAS  PubMed  Google Scholar 

  4. Lawford HLS, Lee AC, Kumar S, Liley HG, Bora S. Establishing a conceptual framework of the impact of placental malaria on infant neurodevelopment. Int J Infect Dis. 2019;84:54–65. https://doi.org/10.1016/j.ijid.2019.04.019.

    Article  PubMed  Google Scholar 

  5. WHO. World Malaria Report 2017. World Health Organization. 2017. https://doi.org/10.1071/EC12504.

  6. • Mayor A, Bardají A, Macete E, Nhampossa T, Fonseca AM, González R, et al. Changing trends in P. falciparum burden, immunity, and disease in pregnancy. N Engl J Med. 2015. https://doi.org/10.1056/NEJMoa1406459This study showed that as immunity decreases, adverse outcomes from malaria in pregnancy increased.

  7. Odongo CO, Odida M, Wabinga H, Obua C, Byamugisha J. Burden of placental malaria among pregnant women who use or do not use intermittent preventive treatment at Mulago hospital, Kampala. Malar Res Treat. 2016;2016:1–7. https://doi.org/10.1155/2016/1839795.

    Article  CAS  Google Scholar 

  8. Mace KE, Arguin PM, Tan KR. Malaria surveillance - United States, 2015. MMWR Surveill Summ. 2018;67:1–28. https://doi.org/10.15585/mmwr.ss6707a1.

    Article  PubMed  PubMed Central  Google Scholar 

  9. World Health Organization. Malaria. Int Travel Heal. 2016:1–23 Available: http://www.who.int/ith/ITH_chapter_7.pdf. Accessed 1 May 2020.

  10. Cdc CFDC and P. Treatment of malaria ( guidelines for clinicians). Treat Malar (Guidelines Clin.). 2013:1–8. https://doi.org/10.1016/S0140-6736(05)66420-3.

  11. Phillips MA, Burrows JN, Manyando C, Van Huijsduijnen RH, Van Voorhis WC, Wells TNC. Malaria. Nat Rev Dis Prim. 2017;3. https://doi.org/10.1038/nrdp.2017.50.

  12. Ashley EA, Pyae Phyo A, Woodrow CJ. Malaria. Lancet. 2018;391:1608–21. https://doi.org/10.1016/S0140-6736(18)30324-6.

    Article  PubMed  Google Scholar 

  13. Wahlgren M, Goel S, Akhouri RR. Variant surface antigens of Plasmodium falciparum and their roles in severe malaria. Nat Rev Microbiol. 2017;15:479–91. https://doi.org/10.1038/nrmicro.2017.47.

    Article  CAS  PubMed  Google Scholar 

  14. Clark RL. Genesis of placental sequestration in malaria and possible targets for drugs for placental malaria. Birth Defects Research. 2019;111:569–83. https://doi.org/10.1002/bdr2.1496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rogerson SJ, Hviid L, Taylor DW, Rogerson SJ, Hviid L, Duff PE, et al. Malaria in pregnancy : pathogenesis and immunity. Malaria in pregnancy : pathogenesis and immunity. 2007;3099:105–17. https://doi.org/10.1016/S1473-3099(07)70022-1.

    Article  Google Scholar 

  16. • Kapisi J, Kakuru A, Jagannathan P, Muhindo MK, Natureeba P, Awori P, et al. Relationships between infection with Plasmodium falciparum during pregnancy, measures of placental malaria, and adverse birth outcomes NCT02163447 NCT. Malar J. 2017;16:1–11. https://doi.org/10.1186/s12936-017-2040-4This study provided longitudinal data demonstrating that higher malaria burden in pregnancy was associated with placental malaria and that placental malaria was associated with higher risk of adverse birth outcomes.

    Article  CAS  Google Scholar 

  17. McDonald CR, Tran V, Kain KC. Complement activation in placental malaria. Front Microbiol. 2015;6. https://doi.org/10.3389/fmicb.2015.01460.

  18. Pehrson C, Salanti A, Theander TG, Nielsen MA. Pre-clinical and clinical development of the first placental malaria vaccine. Expert Review of Vaccines. 2017;16:613–24. https://doi.org/10.1080/14760584.2017.1322512.

    Article  CAS  PubMed  Google Scholar 

  19. Reis AS, Barboza R, Murillo O, Barateiro A, Peixoto EPM, Lima FA, et al. Inflammasome activation and IL-1 signaling during placental malaria induce poor pregnancy outcomes. Sci Adv. 2020;6:eaax6346. https://doi.org/10.1126/sciadv.aax6346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. • Dimasuay KG, Gong L, Rosario F, McBryde E, Spelman T, Glazier J, et al. Impaired placental autophagy in placental malaria. PLoS One. 2017. https://doi.org/10.1371/journal.pone.0187291Placental malaria is associated with dysregulation of placental autophagy and this is possibly impairing placental amino acid transfer to the fetus. Therefore, this may be the underlying mechanism of low birth weight due to placental malaria, especially with intervillositis.

  21. Lima FA, Barateiro A, Dombrowski JG, de Souza RM, de Sousa CD, Murillo O, et al. Plasmodium falciparum infection dysregulates placental autophagy. PLoS One. 2019;14:e0226117. https://doi.org/10.1371/journal.pone.0226117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Feeney ME. The immune response to malaria in utero. Immunol Rev. 2020;293:216–29. https://doi.org/10.1111/imr.12806.

    Article  CAS  PubMed  Google Scholar 

  23. Gaw SL, Hromatka BS, Ngeleza S, Buarpung S, Ozarslan N, Tshefu A, et al. Differential activation of fetal Hofbauer cells in Primigravidas is associated with decreased birth weight in symptomatic placental malaria. Malar Res Treat. 2019;2019:1–10. https://doi.org/10.1155/2019/1378174.

    Article  CAS  Google Scholar 

  24. Djontu JC, Siewe Siewe S, Mpeke Edene YD, Nana BC, Chomga Foko EV, Bigoga JD, et al. Impact of placental Plasmodium falciparum malaria infection on the Cameroonian maternal and neonate’s plasma levels of some cytokines known to regulate T cells differentiation and function. Malar J. 2016;15:561. https://doi.org/10.1186/s12936-016-1611-0.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tran EE, Cheeks ML, Kakuru A, Muhindo MK, Natureeba P, Nakalembe M, et al. The impact of gravidity, symptomatology and timing of infection on placental malaria. Malar J. 2020;19:227. https://doi.org/10.1186/s12936-020-03297-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Adam I, Salih MM, Mohmmed AA, Rayis DA, Elbashir MI. Pregnant women carrying female fetuses are at higher risk of placental malaria infection. PLoS One. 2017;12:e0182394. https://doi.org/10.1371/journal.pone.0182394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Megnekou R, Djontu JC, Bigoga JD, Medou FM, Tenou S, Lissom A. Impact of placental Plasmodium falciparum malaria on the profile of some oxidative stress biomarkers in women living in Yaoundé, Cameroon. PLoS One. 2015;10:e0134633. https://doi.org/10.1371/journal.pone.0134633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sharma L, Shukla G. Placental malaria: a new insight into the pathophysiology. Frontiers in Medicine. 2017;4. https://doi.org/10.3389/fmed.2017.00117.

  29. Obiri D, Erskine IJ, Oduro D, Kusi KA, Amponsah J, Gyan BA, et al. Histopathological lesions and exposure to Plasmodium falciparum infections in the placenta increases the risk of preeclampsia among pregnant women. Sci Rep. 2020;10:8280. https://doi.org/10.1038/s41598-020-64736-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Odorizzi PM, Feeney ME. Impact of in utero exposure to malaria on fetal T cell immunity. Trends Mol Med. 2016;22:877–88. https://doi.org/10.1016/j.molmed.2016.08.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Imamura T, Sugiyama T, Cuevas LE, Makunde R, Nakamura S. Expression of tissue factor, the clotting initiator, on macrophages in Plasmodium falciparum –infected placentas. J Infect Dis. 2002;186:436–40. https://doi.org/10.1086/341507.

    Article  CAS  PubMed  Google Scholar 

  32. Ahenkorah J, Tetteh-Quarcoo PB, Nuamah MA, Kwansa-Bentum B, Nuamah HG, Hottor B, et al. The impact of Plasmodium infection on placental histomorphology: a stereological preliminary study. Infect Dis Obstet Gynecol. 2019;2019:1–8. https://doi.org/10.1155/2019/2094560.

    Article  Google Scholar 

  33. Kidima WB. Syncytiotrophoblast functions and fetal growth restriction during placental malaria: updates and implication for future interventions. Biomed Res Int. 2015;2015:1–9. https://doi.org/10.1155/2015/451735.

    Article  CAS  Google Scholar 

  34. Lybbert J, Gullingsrud J, Chesnokov O, Turyakira E, Dhorda M, Guerin PJ, et al. Abundance of megalin and Dab2 is reduced in syncytiotrophoblast during placental malaria, which may contribute to low birth weight. Sci Rep. 2016;6. https://doi.org/10.1038/srep24508.

  35. Oktavianthi S, Fauzi M, Trianty L, Trimarsanto H, Bowolaksono A, Noviyanti R, et al. Placental mitochondrial DNA copy number is associated with reduced birth weight in women with placental malaria. Placenta. 2019;80:1–3. https://doi.org/10.1016/j.placenta.2019.03.005.

    Article  CAS  PubMed  Google Scholar 

  36. Moeller SL, Nyengaard JR, Larsen LG, Nielsen K, Bygbjerg IC, Msemo OA, et al. Malaria in early pregnancy and the development of the placental vasculature. J Infect Dis. 2020;220:1425–34. https://doi.org/10.1093/infdis/jiy735.

    Article  Google Scholar 

  37. Elphinstone RE, Weckman AM, McDonald CR, Tran V, Zhong K, Madanitsa M, et al. Early malaria infection, dysregulation of angiogenesis, metabolism and inflammation across pregnancy, and risk of preterm birth in Malawi: a cohort study. PLoS Med. 2019;16. https://doi.org/10.1371/journal.pmed.1002914.

  38. Omer SA, Idress HE, Adam I, Abdelrahim M, Noureldein AN, Abdelrazig AM, et al. Placental malaria and its effect on pregnancy outcomes in Sudanese women from Blue Nile state. Malar J. 2017;16:374. https://doi.org/10.1186/s12936-017-2028-0.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fried M, Duffy PE. Malaria during pregnancy. Cold Spring Harb Perspect Med. 2017;7. https://doi.org/10.1101/cshperspect.a025551.

  40. Rogerson SJ, Desai M, Mayor A, Sicuri E, Taylor SM, van Eijk AM. Burden, pathology, and costs of malaria in pregnancy: new developments for an old problem. Lancet Infect Dis. 2018;18:e107–18. https://doi.org/10.1016/S1473-3099(18)30066-5.

    Article  PubMed  Google Scholar 

  41. Okiring J, Olwoch P, Kakuru A, Okou J, Ochokoru H, Ochieng TA, et al. Household and maternal risk factors for malaria in pregnancy in a highly endemic area of Uganda: a prospective cohort study. Malar J. 2019;18:1–9. https://doi.org/10.1186/s12936-019-2779-x.

    Article  Google Scholar 

  42. Ofori MF, Lamptey H, Dickson EK, Kyei-Baafour E, Hviid L. Etiology of placental plasmodium falciparum malaria in African women. J Infect Dis. 2018;218:277–81. https://doi.org/10.1093/infdis/jiy168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. O’Neil-Dunne I, Achur RN, Agbor-Enoh ST, Valiyaveettil M, Naik RS, Ockenhouse CF, et al. Gravidity-dependent production of antibodies that inhibit binding of Plasmodium falciparum-infected erythrocytes to placental chondroitin sulfate proteoglycan during pregnancy. Infect Immun. 2001;69:7487–92. https://doi.org/10.1128/IAI.69.12.7487-7492.2001.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Duffy PE. Plasmodium in the placenta: parasites, parity, protection, prevention and possibly preeclampsia. Parasitology. 2007;134:1877–81. https://doi.org/10.1017/S0031182007000170.

    Article  CAS  PubMed  Google Scholar 

  45. Steketee RW, Wirima JJ, Bloland PB, Chilima B, Mermin JH, Chitsulo L, et al. Impairment of a pregnant woman’s acquired ability to limit Plasmodium falciparum by infection with human immunodeficiency virus type-1. Am J Trop Med Hyg. 1996;55:42–9. https://doi.org/10.4269/ajtmh.1996.55.42.

    Article  CAS  PubMed  Google Scholar 

  46. Natureeba P, Ades V, Luwedde F, Mwesigwa J, Plenty A, Okong P, et al. Lopinavir/ritonavir-based antiretroviral treatment (ART) versus efavirenz-based ART for the prevention of malaria among HIV-infected pregnant women. J Infect Dis. 2014;210:1938–45. https://doi.org/10.1093/infdis/jiu346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gelaye B, Rondon MB, Araya R, Williams MA. Epidemiology of maternal depression, risk factors, and child outcomes in low-income and middle-income countries. Lancet Psychiatry. 2016;3:973–82. https://doi.org/10.1016/S2215-0366(16)30284-X.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Weobong B, Ten Asbroek AHA, Soremekun S, Manu AA, Owusu-Agyei S, Prince M, et al. Association of antenatal depression with adverse consequences for the mother and newborn in rural Ghana: findings from the DON population-based cohort study. PLoS One. 2014;9:e116333. https://doi.org/10.1371/journal.pone.0116333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. • Ategeka J, Kakuru A, Kajubi R, Wasswa R, Ochokoru H, Arinaitwe E, et al. Relationships between measures of malaria at delivery and adverse birth outcomes in a high-transmission area of Uganda. J Infect Dis. 2020. https://doi.org/10.1093/infdis/jiaa156This study investigated the association between various measurements of malaria at delivery (placental blood microscopy, LAMP, and histopathology) and adverse birth outcomes. Placental histopathology detected more malarial infection and was associated with small for gestational age.

  50. Lufele E, Umbers A, Ordi J, Ome-Kaius M, Wangnapi R, Unger H, et al. Risk factors and pregnancy outcomes associated with placental malaria in a prospective cohort of Papua New Guinean women. Malar J. 2017;16:427. https://doi.org/10.1186/s12936-017-2077-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. • Moore KA, Simpson JA, Scoullar MJL, McGready R, Fowkes FJI. Quantification of the association between malaria in pregnancy and stillbirth: a systematic review and meta-analysis. Lancet Glob Heal. 2017;5:e1101–12. https://doi.org/10.1016/S2214-109X(17)30340-6Study found that P. falciparum and P. vivax malaria in pregnancy both increase stillbirth risk. The risk of malaria-associated stillbirth is likely to increase as endemicity declines.

    Article  Google Scholar 

  52. Briggs J, Ategeka J, Kajubi R, Ochieng T, Kakuru A, Ssemanda C, et al. Impact of microscopic and submicroscopic parasitemia during pregnancy on placental malaria in a high-transmission setting in Uganda. J Infect Dis. 2019;220:457–66. https://doi.org/10.1093/infdis/jiz130.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nambozi M, Tinto H, Mwapasa V, Tagbor H, Kabuya JBB, Hachizovu S, et al. Artemisinin-based combination therapy during pregnancy: outcome of pregnancy and infant mortality: a cohort study. Malar J. 2019;18:1–8. https://doi.org/10.1186/s12936-019-2737-7.

    Article  Google Scholar 

  54. Boudová S, Divala T, Mungwira R, Mawindo P, Tomoka T, Laufer MK. Placental but not peripheral Plasmodium falciparum infection during pregnancy is associated with increased risk of malaria in infancy. J Infect Dis. 2017;216:732–5. https://doi.org/10.1093/infdis/jix372.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Walker PGT, Floyd J, ter Kuile F, Cairns M. Estimated impact on birth weight of scaling up intermittent preventive treatment of malaria in pregnancy given sulphadoxine-pyrimethamine resistance in Africa: a mathematical model. PLoS Med. 2017;14:1–19. https://doi.org/10.1371/journal.pmed.1002243.

    Article  Google Scholar 

  56. Del Castillo M, Szymanski AM, Slovin A, Wong ECC, De Biasi RL. Case report: congenital Plasmodium falciparum malaria in Washington, DC. Am J Trop Med Hyg. 2017;96:167–9. https://doi.org/10.4269/ajtmh.15-0630.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tassi Yunga S, Fouda GG, Sama G, Ngu JB, Leke RGF, Taylor DW. Increased susceptibility to Plasmodium falciparum in infants is associated with low, not high, placental malaria parasitemia. Sci Rep. 2018;8:1–10. https://doi.org/10.1038/s41598-017-18574-6.

    Article  CAS  Google Scholar 

  58. Hangi M, Achan J, Saruti A, Quinlan J, Idro R. Congenital malaria in newborns presented at Tororo General Hospital in Uganda: a cross-sectional study. Am J Trop Med Hyg. 2019;100:1158–63. https://doi.org/10.4269/ajtmh.17-0341.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Adam I, Elhassan EM, Haggaz AED, Ali AAA, Adam GK. A perspective of the epidemiology of malaria and anaemia and their impact on maternal and perinatal outcomes in Sudan. J Infect Dev Ctries. 2011. https://doi.org/10.3855/jidc.1282.

  60. Briggs J, Ategeka J, Kajubi R, Ochieng T, Kakuru A, Ssemanda C, et al. Impact of microscopic and submicroscopic parasitemia during pregnancy on placental malaria in a high-transmission setting in Uganda. J Infect Dis. 2019;220:457–66. https://doi.org/10.1093/infdis/jiz130.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Vásquez AM, Medina AC, Tobón-Castaño A, Posada M, Vélez GJ, Campillo A, et al. Performance of a highly sensitive rapid diagnostic test (HS-RDT) for detecting malaria in peripheral and placental blood samples from pregnant women in Colombia. PLoS One. 2018;13:e0201769. https://doi.org/10.1371/journal.pone.0201769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vásquez AM, Zuluaga L, Tobón A, Posada M, Vélez G, González IJ, et al. Diagnostic accuracy of loop-mediated isothermal amplification (LAMP) for screening malaria in peripheral and placental blood samples from pregnant women in Colombia. Malar J. 2018;17:262. https://doi.org/10.1186/s12936-018-2403-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bulmer JN, Rasheed FN, Francis N, Morrison L, Greenwood BM. Placental malaria. I Pathological classification. Histopathology. 1993;22:211–8. https://doi.org/10.1111/j.1365-2559.1993.tb00110.x.

    Article  CAS  PubMed  Google Scholar 

  64. Muehlenbachs A, Fried M, McGready R, Harrington WE, Mutabingwa TK, Nosten F, et al. A novel histological grading scheme for placental malaria applied in areas of high and low malaria transmission. J Infect Dis. 2010;202:1608–16. https://doi.org/10.1086/656723.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Liu Y, Griffin JB, Muehlenbachs A, Rogerson SJ, Bailis AJ, Sharma R, et al. Diagnosis of placental malaria in poorly fixed and processed placental tissue. Malar J. 2016;15:272. https://doi.org/10.1186/s12936-016-1314-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ouédraogo S, Accrombessi M, Diallo I, Codo R, Ouattara A, Ouédraogo L, et al. Placental impression smears is a good indicator of placental malaria in sub-saharan Africa. Pan Afr Med J. 2019. https://doi.org/10.11604/pamj.2019.34.30.20013.

  67. Madanitsa M, Kalilani L, Mwapasa V, van Eijk AM, Khairallah C, Ali D, et al. Scheduled intermittent screening with rapid diagnostic tests and treatment with dihydroartemisinin-piperaquine versus intermittent preventive therapy with sulfadoxine-pyrimethamine for malaria in pregnancy in Malawi: an open-label randomized controlled Tr. PLoS Med. 2016;13:1–19. https://doi.org/10.1371/journal.pmed.1002124.

    Article  CAS  Google Scholar 

  68. •• Kakuru A, Jagannathan P, Muhindo MK, Natureeba P, Awori P, Nakalembe M, et al. Dihydroartemisinin–piperaquine for the prevention of malaria in pregnancy. N Engl J Med. 2016;374:928–39. https://doi.org/10.1056/NEJMoa1509150This study demonstrated that intermittent preventive treatment with dihydroartemisinin–piperaquine is a safe and efficacious alternative to intermittent preventive treatment with sulfadoxine–pyrimethamine which has growing resistance in endemic sub-Saharan Africa.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Desai M, Gutman J, L’Lanziva A, Otieno K, Juma E, Kariuki S, et al. Intermittent screening and treatment or intermittent preventive treatment with dihydroartemisinin-piperaquine versus intermittent preventive treatment with sulfadoxine-pyrimethamine for the control of malaria during pregnancy in western Kenya: an open-lab. Lancet. 2015;386:2507–19. https://doi.org/10.1016/S0140-6736(15)00310-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Savic RM, Jagannathan P, Kajubi R, Huang L, Zhang N, Were M, et al. Intermittent preventive treatment for malaria in pregnancy: optimization of target concentrations of dihydroartemisinin-piperaquine. Clin Infect Dis. 2018;67:1079–88. https://doi.org/10.1093/cid/ciy218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. •• Group TPS. Four artemisinin-based treatments in African pregnant women with malaria. 2016. https://doi.org/10.1056/NEJMoa1508606, https://doi.org/10.1056/NEJMoa1508606Before this study, there was limited information in on the safety and efficacy of artemisinin combination treatments for malaria in pregnant women. This study demonstrated that out of four artemisinin-based options, dihydroartemisinin–piperaquine had the best efficacy and an acceptable safety profile.

  72. Kuepfer I, Mishra N, Bruce J, Mishra V, Anvikar AR, Satpathi S, et al. Effectiveness of intermittent screening and treatment for the control of malaria in pregnancy: a cluster randomised trial in India. BMJ Glob Heal. 2019;4:e001399. https://doi.org/10.1136/bmjgh-2019-001399.

    Article  Google Scholar 

  73. Patel JC, Hathaway NJ, Parobek CM, Thwai KL, Madanitsa M, Khairallah C, et al. Increased risk of low birth weight in women with placental malaria associated with P. falciparum VAR2CSA clade. Sci Rep. 2017;7:1–12. https://doi.org/10.1038/s41598-017-04737-y.

    Article  CAS  Google Scholar 

  74. Rogerson SJ, Aitken EH. Progress towards vaccines to protect pregnant women from malaria. EBioMedicine. 2019;42:12–3. https://doi.org/10.1016/j.ebiom.2019.03.042.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chêne A, Gangnard S, Guadall A, Ginisty H, Leroy O, Havelange N, et al. Preclinical immunogenicity and safety of the cGMP-grade placental malaria vaccine PRIMVAC. EBioMedicine. 2019;42:145–56. https://doi.org/10.1016/j.ebiom.2019.03.010.

    Article  PubMed  PubMed Central  Google Scholar 

  76. •• Sirima SB, Richert L, Chêne A, Konate AT, Campion C, Dechavanne S, et al. PRIMVAC vaccine adjuvanted with Alhydrogel or GLA-SE to prevent placental malaria: a first-in-human, randomised, double-blind, placebo-controlled study. Lancet Infect Dis. 2020. https://doi.org/10.1016/S1473-3099(19)30739-XThis study investigated the safety and immunogenity of PRIMVAC vaccine among two different women populations from France and Burkina Faso. They showed that PRIMVAC was safe and immunogenic and induced functional antibodies against homologous VAR2CSA variant and with higher doses also against heterologous variants.

  77. Mordmüller B, Sulyok M, Egger-Adam D, Resende M, De Jongh WA, Jensen MH, et al. First-in-human, randomized, double-blind clinical trial of differentially adjuvanted PAMVAC, a vaccine candidate to prevent pregnancy-associated malaria. Clin Infect Dis. 2019;69:1509–16. https://doi.org/10.1093/cid/ciy1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. •• Cutts JC, Agius PA, Lin Z, Powell R, Moore K, Draper B, et al. Pregnancy-specific malarial immunity and risk of malaria in pregnancy and adverse birth outcomes: a systematic review. BMC Med. 2020;18:1–21. https://doi.org/10.1186/s12916-019-1467-6This systemic review emphasized the shortage of evidence concerning protective relationship of antibodies generated against vaccines and placental malaria. It also endorses that antibodies against P. falciparum function as placental infection markers rather than protecting from placental malaria.

    Article  Google Scholar 

  79. Benavente ED, Oresegun DR, de Sessions PF, Walker EM, Roper C, Dombrowski JG, et al. Global genetic diversity of var2csa in Plasmodium falciparum with implications for malaria in pregnancy and vaccine development. Sci Rep. 2018;8:15429. https://doi.org/10.1038/s41598-018-33767-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. • Doritchamou J, Teo A, Morrison R, Arora G, Kwan J, Manzella-Lapeira J, et al. Functional antibodies against placental malaria parasites are variant dependent and differ by geographic region. Infect Immun. 2019;87:1–14. https://doi.org/10.1128/IAI.00865-18In addition to the well-known influence of gravidity on placental malaria, it was also shown that both parasite variant and geographical location effect binding inhibition and opsonizing function of antibodies generated against P. falciparum.

    Article  Google Scholar 

Download references

Funding

SLG is supported by the National Institutes of Health (NIAID K08AI141728).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie L. Gaw.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on The Placenta, Tropical Diseases, and Pregnancies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakama, A.K., Ozarslan, N. & Gaw, S.L. Placental Malaria. Curr Trop Med Rep 7, 162–171 (2020). https://doi.org/10.1007/s40475-020-00213-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40475-020-00213-2

Keywords

Profiles

  1. Nida Ozarslan