[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Spatiotemporal changes of gross primary productivity and its response to drought in the Mongolian Plateau under climate change

  • Research Article
  • Published:
Journal of Arid Land Aims and scope Submit manuscript

Abstract

Gross primary productivity (GPP) of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought. Understanding the impact of droughts on different types of vegetation GPP provides insight into the spatiotemporal variation of terrestrial carbon sinks, aiding efforts to mitigate the detrimental effects of climate change. In this study, we utilized the precipitation and temperature data from the Climatic Research Unit, the standardized precipitation evapotranspiration index (SPEI), the standardized precipitation index (SPI), and the simulated vegetation GPP using the eddy covariance-light use efficiency (EC-LUE) model to analyze the spatiotemporal change of GPP and its response to different drought indices in the Mongolian Plateau during 1982–2018. The main findings indicated that vegetation GPP decreased in 50.53% of the plateau, mainly in its northern and northeastern parts, while it increased in the remaining 49.47% area. Specifically, meadow steppe (78.92%) and deciduous forest (79.46%) witnessed a significant decrease in vegetation GPP, while alpine steppe (75.08%), cropland (76.27%), and sandy vegetation (87.88%) recovered well. Warming aridification areas accounted for 71.39% of the affected areas, while 28.53% of the areas underwent severe aridification, mainly located in the south and central regions. Notably, the warming aridification areas of desert steppe (92.68%) and sandy vegetation (90.24%) were significant. Climate warming was found to amplify the sensitivity of coniferous forest, deciduous forest, meadow steppe, and alpine steppe GPP to drought. Additionally, the drought sensitivity of vegetation GPP in the Mongolian Plateau gradually decreased as altitude increased. The cumulative effect of drought on vegetation GPP persisted for 3.00–8.00 months. The findings of this study will improve the understanding of how drought influences vegetation in arid and semi-arid areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

References

  • Abramopoulos F, Rosenzweig C, Choudhury B. 1988. Improved ground hydrology calculations for global climate models (GCMs): Soil water movement and evapotranspiration. Journal of Climate, 1(9): 921–941.

    Article  Google Scholar 

  • Agarwal S, Suchithra A S, Singh S P. 2021. Analysis and interpretation of rainfall trend using Mann-Kendall’s and Sen’s slope method. Indian Journal of Ecology, 48(2): 453–457.

    Google Scholar 

  • Akhalkatsi M. 2017. Climate global change on reproduction and diversity of agricultural plants in semi-arid regions of Georgia (Caucasus Ecoregion). Agricultural Research & Technology: Open Access Journal, 3(4): 555619, doi: https://doi.org/10.19080/artoaj.2017.03.555619.

    Google Scholar 

  • Bai Y, Li S G. 2022. Growth peak of vegetation and its response to drought on the Mongolian Plateau. Ecological Indicators, 141: 109150, doi: https://doi.org/10.1016/j.ecolind.2022.109150.

    Article  Google Scholar 

  • Bo Y, Li X K, Liu K, et al. 2022. Three decades of gross primary production (GPP) in China: Variations, trends, attributions, and prediction inferred from multiple datasets and time series modeling. Remote Sensing, 14(11): 2564, doi: https://doi.org/10.3390/rs14112564.

    Article  Google Scholar 

  • Charlton C, Stephenson T, Taylor M A, et al. 2022. Evaluating skill of the Keetch–Byram drought index, vapour pressure deficit and water potential for determining bushfire potential in Jamaica. Atmosphere, 13(8): 1276, doi: https://doi.org/10.3390/atmos13081267.

    Article  Google Scholar 

  • Chen S L, Huang Y F, Wang G Q. 2021. Detecting drought-induced GPP spatiotemporal variabilities with sun-induced chlorophyll fluorescence during the 2009/2010 droughts in China. Ecological Indicators, 121: 107092, doi: https://doi.org/10.1016/j.ecolind.2020.107092.

    Article  CAS  Google Scholar 

  • Chen X N, Tao X, Yang Y P. 2022. Distribution and attribution of gross primary productivity increase over the Mongolian Plateau, 2001–2018. IEEE Access, 10: 25125–25134.

    Article  Google Scholar 

  • Chu D, Shen H F, Guan X B, et al. 2021. Long time-series NDVI reconstruction in cloud-prone regions via spatio-temporal tensor completion. Remote Sensing of Environment, 264: 112632, doi: https://doi.org/10.1016/j.rse.2021.112632.

    Article  Google Scholar 

  • Cui T X, Wang Y J, Sun R, et al. 2017. Estimating vegetation primary production in the Heihe river basin of China with multi-source and multi-scale data. PLoS ONE, 11(4): e0153971, doi: https://doi.org/10.1371/journal.pone.0153971.

    Article  Google Scholar 

  • Dannenberg M P, Yan D, Barnes M L, et al. 2022. Exceptional heat and atmospheric dryness amplified losses of primary production during the 2020 U.S. Southwest hot drought. Global Change Biology, 28(16): 4794–4806.

    Article  PubMed  Google Scholar 

  • Deng H Y, Yin Y H, Han X. 2020. Vulnerability of vegetation activities to drought in Central Asia. Environmental Research Letters, 15(8): 084005, doi: https://doi.org/10.1088/1748-9326/ab93fa.

    Article  Google Scholar 

  • Du J, He Z B, Piatek B K, et al. 2019. Interacting effects of temperature and precipitation on climatic sensitivity of spring vegetation green-up in arid mountains of China. Agricultural and Forest Meteorology, 269–270: 71–77.

    Article  Google Scholar 

  • Feng S, Fu Q. 2013. Expansion of global drylands under a warming climate. Atmospheric Chemistry and Physics, 13(19): 10081–10094.

    Article  CAS  Google Scholar 

  • Green J K, Berry J, Ciais P, et al. 2020. Amazon rainforest photosynthesis increases in response to atmospheric dryness. Science Advances, 6(47): eabb7232, doi: https://doi.org/10.1126/sciadv.abb7232.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu X L, Guo E L, Yin S, et al. 2022. Differentiating cumulative and lagged effects of drought on vegetation growth over the Mongolian Plateau. Ecosphere, 13(12): e4289, doi: https://doi.org/10.1002/ecs2.4289.

    Article  Google Scholar 

  • Guan X B, Chen J M, Shen H F, et al. 2022. Comparison of big-leaf and two-leaf light use efficiency models for GPP simulation after considering a radiation scalar. Agricultural and Forest Meteorology, 313: 108761, doi: https://doi.org/10.1016/j.agrformet.2021.108761.

    Article  Google Scholar 

  • Guo E L, Wang Y F, Wang C L, et al. 2021. NDVI indicates long-term dynamics of vegetation and its driving forces from climatic and anthropogenic factors in Mongolian Plateau. Remote Sensing, 13(4): 688, doi: https://doi.org/10.3390/rs13040688.

    Article  Google Scholar 

  • Hang J, Guan X, Ji F. 2012. Enhanced cold-season warming in semi-arid regions. Atmospheric Chemistry and Physics, 12(12): 5391–5398.

    Article  Google Scholar 

  • Hayes M, Svoboda M, Wall N, et al. 2011. The Lincoln Declaration on drought indices: Universal meteorological drought index recommended. Bulletin of the American Meteorological Society, 92(4): 485–488.

    Article  Google Scholar 

  • He B, Tuya W, Qinchaoketu S, et al. 2022a. Climate change characteristics of typical grassland in the Mongolian Plateau from 1978 to 2020. Sustainability, 14(24): 16529, doi: https://doi.org/10.3390/su142416529.

    Article  Google Scholar 

  • He P X, Ma X L, Meng X Y, et al. 2022b. Spatiotemporal evolutionary and mechanism analysis of grassland GPP in China. Ecological Indicators, 143: 109323, doi: https://doi.org/10.1016/j.ecolind.2022.109323.

    Article  CAS  Google Scholar 

  • Huang Y C, Liu B W, Zhao H G, et al. 2022. Spatial and temporal variation of droughts in the Mongolian Plateau during 1959–2018 based on the gridded self-calibrating palmer drought severity index. Water, 14(2): 230, doi: https://doi.org/10.3390/w14020230.

    Article  Google Scholar 

  • Ji J Y, Lin H. 2022. Evaluating regional carbon inequality and its dependence with carbon efficiency: implications for carbon neutrality. Energies, 15(19): 7022, doi: https://doi.org/10.3390/en15197022.

    Article  CAS  Google Scholar 

  • Jiang C Y, Ryu Y. 2016. Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from Breathing Earth System Simulator (BESS). Remote Sensing of Environment, 186: 528–547.

    Article  Google Scholar 

  • Kang Y, Guo E L, Wang Y F, et al. 2021. Application of temperature vegetation dryness index for drought monitoring in Mongolian Plateau. Chinese Journal of Applied Ecology, 32(7): 2534–2544.

    PubMed  Google Scholar 

  • Kocsis T, Kovács-Székely I, Anda A. 2020. Homogeneity tests and non-parametric analyses of tendencies in precipitation time series in Keszthely, Western Hungary. Theoretical and Applied Climatology, 139(3): 849–859.

    Article  Google Scholar 

  • Li C L, Filho L W, Yin J, et al. 2018. Assessing vegetation response to multi-time-scale drought across Inner Mongolia Plateau. Journal of Cleaner Production, 179: 210–216.

    Article  Google Scholar 

  • Li G S, Yu L X, Liu T X, et al. 2023. Spatial and temporal variations of grassland vegetation on the Mongolian Plateau and its response to climate change. Frontiers in Ecology and Evolution, 11: 1067209, doi: https://doi.org/10.3389/fevo.2023.1067209.

    Article  Google Scholar 

  • Li S J, Wang J M, Zhang M, et al. 2021. Characterizing and attributing the vegetation coverage changes in North Shanxi coal base of China from 1987 to 2020. Resources Policy, 74: 102331, doi: https://doi.org/10.1016/j.resourpol.2021.102331.

    Article  Google Scholar 

  • Luo M, Meng F H, Sa C L, et al. 2021. Response of vegetation phenology to soil moisture dynamics in the Mongolian Plateau. Catena, 206: 105505, doi: https://doi.org/10.1016/j.catena.2021.105505.

    Article  Google Scholar 

  • McKee T B, Doesken N J, Kleist J. 1993. The relationship of drought frequency and duration to time scales. Eighth Conference on Applied Climatology, 17–22.

  • Meng F H, Luo M, Wang Y Q, et al. 2023. Revisiting the main driving factors influencing the dynamics of gross primary productivity in the Mongolian Plateau. Agricultural and Forest Meteorology, 341: 109689, doi: https://doi.org/10.1016/j.agrformet.2023.109689.

    Article  Google Scholar 

  • Na R S, Na L, Du H B, et al. 2021. Vegetation greenness variations and response to climate change in the arid and semi-arid transition zone of the Mongo-Lian Plateau during 1982–2015. Remote Sensing, 13(20): 4066, doi: https://doi.org/10.3390/rs13204066.

    Article  Google Scholar 

  • Nandintsetseg B, Shinoda M. 2011. Seasonal change of soil moisture in Mongolia: its climatology and modelling. International Journal of Climatology, 31(8): 1143–1152.

    Article  Google Scholar 

  • Neda K, Hossein R, Javad B. 2022. Investigation of drought trend on the basis of the best obtained drought index. Water Resources Management, 36(4): 1355–1375.

    Article  Google Scholar 

  • Nie T, Dong G T, Jiang X H, et al. 2021. Spatio-temporal changes and driving forces of vegetation coverage on the loess Plateau of Northern Shaanxi. Remote Sensing, 13(4): 613, doi: https://doi.org/10.3390/rs13040613.

    Article  Google Scholar 

  • Pan L, Xia H M, Zhao X Y, et al. 2021. Mapping winter crops using a phenology algorithm, time-series sentinel-2 and landsat-7/8 images, and google earth engine. Remote Sensing, 13(13): 2510, doi: https://doi.org/10.3390/rs13132510.

    Article  Google Scholar 

  • Pei Y Y, Dong J W, Zhang Y, et al. 2022. Evolution of light use efficiency models: improvement, uncertainties, and implications. Agricultural and Forest Meteorology, 317: 108905, doi: https://doi.org/10.1016/j.agrformet.2022.108905.

    Article  Google Scholar 

  • Peng J, Wu C Y, Wang X Y, et al. 2019. Satellite detection of cumulative and lagged effects of drought on autumn leaf senescence over the Northern Hemisphere. Global Change Biology, 25(6): 2174–2188.

    Article  PubMed  Google Scholar 

  • Piao S L, Amwar M, Fang J Y, et al. 2006. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Global Environmental Change, 16(4): 340–348.

    Article  Google Scholar 

  • Piao S L, Sitch S, Ciais P, et al. 2013. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Global Change Biology, 19(7): 2117–2132.

    Article  PubMed  Google Scholar 

  • Piao S L, He Y, Wang X H, et al. 2022. Estimation of China’s terrestrial ecosystem carbon sink: methods, progress and prospects. Science China (Earth Sciences), 65(4): 641–651.

    Article  Google Scholar 

  • Qu S, Wang L C, Lin A W, et al. 2020. Distinguishing the impacts of climate change and anthropogenic factors on vegetation dynamics in the Yangtze River Basin, China. Ecological Indicators, 108: 105724, doi: https://doi.org/10.1016/j.ecolind.2019.105724.

    Article  Google Scholar 

  • Reddy A R, Chaitanya K V, Vivekanandan M. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161(11): 1189–1202.

    Article  CAS  Google Scholar 

  • Ritter F, Berkelhammer M, Garcia-Eidell C. 2020. Distinct response of gross primary productivity in five terrestrial biomes to precipitation variability. Communications Earth & Environment, 1(1): 34, doi: https://doi.org/10.1038/s43247-020-00034-1.

    Article  Google Scholar 

  • Sun S L, Sun G, Peter C, et al. 2015. Drought impacts on ecosystem functions of the U.S. National Forests and Grasslands: Part II assessment results and management implications. Forest Ecology and Management, 353: 269–279.

    Google Scholar 

  • Vanikiotis T, Stagakis S, Kyparissis A. 2021. MODIS PRI performance to track light use efficiency of a Mediterranean coniferous forest: Determinants, restrictions and the role of LUE range. Agricultural and Forest Meteorology, 307: 108518, doi: https://doi.org/10.1016/j.agrformet.2021.108518.

    Article  Google Scholar 

  • Vicente-Serrano S M, Beguería S, López-Moreno J. 2010a. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7): 1696–1718.

    Article  Google Scholar 

  • Vicente-Serrano S M, Beguería S, López-Moreno J, et al. 2010b. A new global 0.5° gridded dataset (1901–2006) of a multiscale drought index: Comparison with current drought index datasets based on the Palmer drought severity index. Journal of Hydrometeorology, 11(4): 1033–1043.

    Article  Google Scholar 

  • Wang K, Bastos A, Ciais P, et al. 2022a. Regional and seasonal partitioning of water and temperature controls on global land carbon uptake variability. Nature Communications, 13(1): 3469, doi: https://doi.org/10.1038/s41467-022-31175-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M J, Sun R, Zhu A R, et al. 2020. Evaluation and comparison of light use efficiency and gross primary productivity using three different approaches. Remote Sensing, 12(6): 1003, doi: https://doi.org/10.3390/rs12061003.

    Article  Google Scholar 

  • Wang M M, Wang S Q, Wang J B, et al. 2018. Detection of positive gross primary production extremes in terrestrial ecosystems of China during 1982–2015 and analysis of climate contribution. Journal of Geophysical Research: Biogeosciences, 123(9): 2807–2823.

    Article  Google Scholar 

  • Wang S H, Zhang Y G, Ju W M, et al. 2021a. Tracking the seasonal and inter-annual variations of global gross primary production during last four decades using satellite near-infrared reflectance data. Science of the Total Environment, 755(P2): 142569, doi: https://doi.org/10.1016/j.scitotenv.2020.142569.

    Article  CAS  PubMed  Google Scholar 

  • Wang S P, Wang J S, Zhang Q, et al. 2016. Cumulative effect of precipitation deficit preceding severe droughts in southwestern and southern China. Discrete Dynamics in Nature and Society, 2016: 2890852, doi: https://doi.org/10.1155/2016/2890852.

    Google Scholar 

  • Wang Y H, Fu Z, Hu Z M, et al. 2022b. Tracking global patterns of drought-induced productivity loss along severity gradient. Journal of Geophysical Research: Biogeosciences, 127(6): e2021JG006753, doi: https://doi.org/10.1029/2021jg006753.

    Article  Google Scholar 

  • Wang Z, Liu S G, Wang Y P, et al. 2021b. Tighten the bolts and nuts on GPP estimations from sites to the globe: An assessment of remote sensing based LUE models and supporting data fields. Remote Sensing, 13(2): 168, doi: 10.3390/rs13020168.

    Article  Google Scholar 

  • Wang Z, Zhang T L, Pei C Y, et al. 2022c. Multisource remote sensing monitoring and analysis of the driving forces of vegetation restoration in the Mu Us sandy land. Land, 11(9): 1553, doi: https://doi.org/10.3390/land11091553.

    Article  Google Scholar 

  • Wei X N, He W, Zhou Y L, et al. 2022. Global assessment of lagged and cumulative effects of drought on grassland gross primary production. Ecological Indicators, 136: 108646, doi: https://doi.org/10.1016/j.ecolind.2022.108646.

    Article  CAS  Google Scholar 

  • Wei X N, He W, Zhou Y L, et al. 2023. Increased sensitivity of global vegetation productivity to drought over the recent three decades. Journal of Geophysical Research: Atmospheres, 128(7): e2022JD037504, doi: https://doi.org/10.1029/2022JD037504.

    Article  Google Scholar 

  • Wolf S, Eugster W, Ammann C, et al. 2013. Contrasting response of grassland versus forest carbon and water fluxes to spring drought in Switzerland. Environmental Research Letters, 8(3): 035007, doi: https://doi.org/10.1088/1748-9326/8/3/035007.

    Article  Google Scholar 

  • Wu C L, Wang T J. 2022. Evaluating cumulative drought effect on global vegetation photosynthesis using numerous GPP products. Frontiers in Environmental Science, 10: 908875, doi: https://doi.org/10.3389/fenvs.2022.908875.

    Article  Google Scholar 

  • Wu X P, Zhang R R, Bento V A, et al. 2022. The effect of drought on vegetation gross primary productivity under different vegetation types across China from 2001 to 2020. Remote Sensing, 14(18): 4658, doi: https://doi.org/10.3390/rs14184658.

    Article  Google Scholar 

  • Xiao J F, Chevallier F, Gomez C, et al. 2019. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sensing of Environment, 233: 111383, doi: https://doi.org/10.1016/j.rse.2019.111383.

    Article  Google Scholar 

  • Xie X Y, Li A N. 2020. Development of a topographic-corrected temperature and greenness model (TG) for improving GPP estimation over mountainous areas. Agricultural and Forest Meteorology, 295: 108193, doi: https://doi.org/10.1016/j.agrformet.2020.108193.

    Article  Google Scholar 

  • Xie Z Y, Zhao C L, Zhu W Q, et al. 2023. A radiation-regulated dynamic maximum light use efficiency for improving gross primary productivity estimation. Remote Sensing, 15(5): 1176, doi: https://doi.org/10.3390/rs15051176.

    Article  Google Scholar 

  • Xiong Q, Sun Z Y, Cui W, et al. 2022. A study on sensitivities of tropical forest GPP responding to the characteristics of drought—A case study in Xishuangbanna, China. Water, 14(2): 157, doi: https://doi.org/10.3390/w14020157.

    Article  CAS  Google Scholar 

  • Xu H L, Chen Y N, Li W H. 2003. Multiple regression analysis of the relationship between environmental factors and desertification in the lower Tarim River. Arid Zone Research, 20(1): 39–43. (in Chinese)

    Google Scholar 

  • Yin C H, Luo M, Meng F H, et al. 2022. Contributions of climatic and anthropogenic drivers to net primary productivity of vegetation in the Mongolian Plateau. Remote Sensing, 14(14): 3383, doi: https://doi.org/10.3390/rs14143383.

    Article  Google Scholar 

  • Yin C H, Chen X Q, Luo M, et al. 2023. Quantifying the contribution of driving factors on distribution and change of net primary productivity of vegetation in the Mongolian Plateau. Remote Sensing, 15(8): 1986, doi: https://doi.org/10.3390/rs15081986.

    Article  Google Scholar 

  • Yu T, Sun R, Xiao Z Q, et al. 2018. Estimation of global vegetation productivity from global land surface satellite data. Remote Sensing, 10(2): 327, doi: https://doi.org/10.3390/rs10020327.

    Article  Google Scholar 

  • Yuan W P, Liu S G, Yu G R, et al. 2010. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sensing of Environment, 114(7): 1416–1431.

    Article  Google Scholar 

  • Zhan C, Liang C, Zhao L, et al. 2022. Drought-related cumulative and time-lag effects on vegetation dynamics across the Yellow River Basin, China. Ecological Indicators, 143: 109409, doi: https://doi.org/10.1016/j.ecolind.2022.109409.

    Article  Google Scholar 

  • Zhang B Q, Wu P T, Zhao X N, et al. 2012. Changes in vegetation condition in areas with different gradients (1980–2010) on the Loess Plateau, China. Environmental Earth Sciences, 68(8): 2427–2438.

    Article  Google Scholar 

  • Zhang M, Yuan X, Otkin J A. 2020. Remote sensing of the impact of flash drought events on terrestrial carbon dynamics over China. Carbon Balance and Management, 15(1): 20, doi: https://doi.org/10.1186/s13021-020-00156-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S Z, Zhu X F, Liu T T, et al. 2022a. Response of gross primary production to drought under climate change in different vegetation regions of China. Acta Ecologica Sinica, 42(8): 3429–3440. (in Chinese)

    CAS  Google Scholar 

  • Zhang X, Sa C L, Hai Q S, et al. 2023. Quantifying the effects of snow on the beginning of vegetation growth in the Mongolian Plateau. Remote Sensing, 15(5): 1245, doi: https://doi.org/10.3390/rs15051245.

    Article  Google Scholar 

  • Zhang Y, Xiao X M, Wu X C, et al. 2017. A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Scientific Data, 4(1): 170165, doi: https://doi.org/10.1038/sdata.2017.165.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y Z, Wang Z Q, Wang Q, et al. 2022b. Comparative assessment of grassland dynamic and its response to drought based on multi-index in the Mongolian Plateau. Plants, 11(3): 310, doi: https://doi.org/10.3390/plants11030310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z Y, Ju W M, Zhou Y L, et al. 2022c. Revisiting the cumulative effects of drought on global gross primary productivity based on new long-term series data (1982–2018). Global Change Biology, 28(11): 3620–3635.

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Ma X W, Chen B Y, et al. 2022. Challenges toward carbon neutrality in China: Strategies and countermeasures. Resources, Conservation & Recycling, 176: 105959, doi: https://doi.org/10.1016/J.RESCONREC.2021.105959.

    Article  CAS  Google Scholar 

  • Zhen Z, Flurin B, Valentin B, et al. 2018. Converging climate sensitivities of European forests between observed radial tree growth and vegetation models. Ecosystems, 21(3): 410–425.

    Article  Google Scholar 

  • Zheng Y, Shen R Q, Wang Y W, et al. 2020. Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017. Earth System Science Data, 12(4): 2725–2746.

    Article  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the National Natural Science Foundation of China (42361024, 42101030, 42261079, and 41961058), the Talent Project of Science and Technology in Inner Mongolia of China (NJYT22027 and NJYT23019), and the Fundamental Research Funds for the Inner Mongolia Normal University, China (2022JBBJ014 and 2022JBQN093).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: ZHAO Xuqin, LUO Min; Data curation: ZHAO Xuqin, LUO Min; Methodology: LUO Min; Investigation: MENG Fanhao, SA Chula, BAO Shanhu; Formal analysis: ZHAO Xuqin; Writing - original draft preparation: ZHAO Xuqin; Writing - review and editing: LUO Min; Funding acquisition: LUO Min, MENG Fanhao, BAO Shanhu; Resources: LUO Min, MENG Fanhao, BAO Shanhu; Supervision: LUO Min; Project administration: LUO Min; Software: LUO Min, ZHAO Xuqin; Validation: MENG Fanhao, BAO Yuhai; Visualization: ZHAO Xuqin, LUO Min, SA Chula. All authors approved the manuscript.

Corresponding author

Correspondence to Min Luo.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Luo, M., Meng, F. et al. Spatiotemporal changes of gross primary productivity and its response to drought in the Mongolian Plateau under climate change. J. Arid Land 16, 46–70 (2024). https://doi.org/10.1007/s40333-024-0090-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40333-024-0090-3

Keywords

Navigation