[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Bound-preserving schemes for \(P^2\) local discontinuous Galerkin discretizations of KdV-type equations

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we construct a bound-preserving (BP) local discontinuous Galerkin (LDG) method for the generalized third-order Korteweg–de Vries (KdV) equations. The KdV equations have been widely used in mathematical models in dispersive hydrodynamics. We are interested in a new algorithm that is closer to the real physical bounds of solitary waves and dispersive shock waves (DSWs). We design a BP scheme for \(P^2\) LDG discretizations on nonuniform meshes so that an appropriate choice for the time step, the space size, and the penalty term is allowed to make the cell average of numerical solutions within the scope of global bounds. The third-order strong stability preserving (SSP) Runge–Kutta method is used to preserve the BP property of the discrete scheme. Furthermore, we extend the BP scheme to the two-dimensional Zakharov–Kuznetsov (ZK) equation. Numerical experiments demonstrate a good performance and accuracy of the BP LDG method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ablowitz MJ (2011) Nonlinear dispersive waves: asymptotic analysis and solitons. Cambridge texts in applied mathematics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ablowitz MJ, Baldwin DE (2013) Interactions and asymptotics of dispersive shock waves–Korteweg–de Vries equation. Phys Lett A 377(7):555–559

    Article  MathSciNet  Google Scholar 

  • Ablowitz MJ, Baldwin DE, Hoefer MA (2009) Soliton generation and multiple phases in dispersive shock and rarefaction wave interaction. Phys Rev E 80:016603

    Article  MathSciNet  Google Scholar 

  • Bona J, Chen H, Karakashian O, Xing Y (2013) Conservative, discontinuous Galerkin-methods for the generalized Korteweg–de Vries equation. Math Comput 82(283):1401–1432

    Article  MathSciNet  Google Scholar 

  • Cheng Y, Shu CW (2008) A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math Comput 77(262):699–730

    Article  MathSciNet  Google Scholar 

  • Chuenjarern N, Xu Z, Yang Y (2019) High-order bound-preserving discontinuous Galerkin methods for compressible miscible displacements in porous media on triangular meshes. J Comput Phys 378:110–128

    Article  MathSciNet  Google Scholar 

  • Dafermos CM (2009) Hyperbolic conservation laws in continuum physics. Springer, Berlin

    Google Scholar 

  • Debussche A, Printems J (1999) Numerical simulation of the stochastic Korteweg–de Vries equation. Physica D 134(2):200–226

    Article  MathSciNet  Google Scholar 

  • Du J, Yang Y (2019) Maximum-principle-preserving third-order local discontinuous Galerkin method for convection–diffusion equations on overlapping meshes. J Comput Phys 377:117–141

    Article  MathSciNet  Google Scholar 

  • Du J, Yang Y (2022) High-order bound-preserving discontinuous Galerkin methods for multicomponent chemically reacting flows. J Comput Phys 469:111548

    Article  MathSciNet  Google Scholar 

  • Du J, Chung E, Yang Y (2022) Maximum-principle-preserving local discontinuous Galerkin methods for Allen–Cahn equations. Commun Appl Math Comput 4(1):353–379

    Article  MathSciNet  Google Scholar 

  • El GA, Hoefer MA (2016) Dispersive shock waves and modulation theory. Physica D 333:11–65

    Article  MathSciNet  Google Scholar 

  • Grava T, Tian F-R (2002) The generation, propagation, and extinction of multiphases in the KdV zero-dispersion limit. Commun Pure Appl Math 55(12):1569–1639

    Article  MathSciNet  Google Scholar 

  • Gurevich AV, Pitaevskii LP (1973) Nonstationary structure of a collisionless shock wave. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 65:590–604

    Google Scholar 

  • Iwasaki H, Toh S, Kawahara T (1990) Cylindrical quasi-solitons of the Zakharov–Kuznetsov equation. Physica D 43(2):293–303

    Article  MathSciNet  Google Scholar 

  • Karakashian O, Xing Y (2016) A posteriori error estimates for conservative local discontinuous Galerkin methods for the generalized Korteweg–de Vries equation. Commun Comput Phys 20(1):250–278

    Article  MathSciNet  Google Scholar 

  • Lax PD (1973) Hyperbolic systems of conservation laws and the mathematical theory of shock waves. Society for Industrial and Applied Mathematics, Philadelphia, pp 1–48

    Google Scholar 

  • Li J, Zhang D, Meng X, Wu B (2020) Analysis of local discontinuous Galerkin methods with generalized numerical fluxes for linearized KdV equations. Math Comput 89:2085–2111

    Article  MathSciNet  Google Scholar 

  • Luo D, Huang W, Qiu J (2016) A hybrid LDG-HWENO scheme for KdV-type equations. J Comput Phys 313:754–774

    Article  MathSciNet  Google Scholar 

  • Meena AK, Kumar H, Chandrashekar P (2017) Positivity-preserving high-order discontinuous Galerkin schemes for Ten-Moment Gaussian closure equations. J Comput Phys 339:370–395

    Article  MathSciNet  Google Scholar 

  • Nozaki K (1981) Vortex solitons of drift waves and anomalous diffusion. Phys Rev Lett 46(3):184–187

    Article  MathSciNet  Google Scholar 

  • Ohannes K, Makridakis C (2015) A posteriori error estimates for discontinuous Galerkin methods for the generalized Korteweg–de Vries equation. Math Comput 84(293):1145–1167

    MathSciNet  Google Scholar 

  • Qin T, Shu CW, Yang Y (2016) Bound-preserving discontinuous Galerkin methods for relativistic hydrodynamics. J Comput Phys 315:323–347

    Article  MathSciNet  Google Scholar 

  • Shu CW (2018) Bound-preserving high-order schemes for hyperbolic equations: survey and recent developments

  • Toh S, Iwasaki H, Kawahara T (1989) Two-dimensionally localized pulses of a nonlinear equation with dissipation and dispersion. Phys Rev A 40(9):5472

    Article  Google Scholar 

  • Wei L, Wei X, Tang B (2022) Numerical analysis of variable-order fractional KdV–Burgers–Kuramoto equation. Electron Res Arch 30(4):1263–1281

    Article  MathSciNet  Google Scholar 

  • Whitham GB (1965) Nonlinear dispersive waves. SIAM J Appl Math 14(4):956–958

    Article  MathSciNet  Google Scholar 

  • Whitham GB (1974) Linear and nonlinear waves, vol 635. John Wiley and Sons, Hoboken

    Google Scholar 

  • Xing Y, Zhang X, Shu CW (2010) Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv Water Resour 33(12):1476–1493

    Article  Google Scholar 

  • Xiong T, Qiu JM, Xu Z (2015) High order maximum-principle-preserving discontinuous Galerkin method for convection–diffusion equations. SIAM J Sci Comput 37(2):583–608

    Article  MathSciNet  Google Scholar 

  • Xu Z (2014) Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws: one-dimensional scalar problem. Math Comput 83:2213–2238

    Article  MathSciNet  Google Scholar 

  • Xu Y, Shu CW (2005) Local discontinuous Galerkin methods for two classes of two-dimensional nonlinear wave equations. Physica D 208(1–2):21–58

    Article  MathSciNet  Google Scholar 

  • Xu Y, Shu CW (2007) Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection–diffusion and KdV equations. Comput Methods Appl Mech Eng 196(37):3805–3822

    Article  MathSciNet  Google Scholar 

  • Xu Z, Yang Y, Guo H (2019) High-order bound-preserving discontinuous Galerkin methods for wormhole propagation on triangular meshes. J Comput Phys 390:323–341

    Article  MathSciNet  Google Scholar 

  • Yan J, Shu CW (2002a) A local discontinuous Galerkin method for KdV type equations. SIAM J Numer Anal 40(2):769–791

  • Yan J, Shu CW (2002b) Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J Sci Comput 17(1–4):27–47

  • Yin X, Cao W (2022) A class of efficient hamiltonian conservative spectral methods for Korteweg–de Vries equations. J Sci Comput 94(1):10

    Article  MathSciNet  Google Scholar 

  • Zakharov VE, Kuznetsov EA (1974) Three-dimensional solitons. Zhurnal Eksperimentalnoi I Teroreticheskoi Fiziki 29(66):594–597

    Google Scholar 

  • Zhang X (2017) On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier–Stokes equations. J Comput Phys 328:301–343

    Article  MathSciNet  Google Scholar 

  • Zhang X, Shu CW (2010a) On maximum-principle-satisfying high order schemes for scalar conservation laws. J Comput Phys 229(9):3091–3120

  • Zhang X, Shu CW (2010b) On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J Comput Phys 229(23):8918–8934

  • Zhang Q, Xia Y (2019) Conservative and dissipative local discontinuous Galerkin methods for Korteweg–de Vries type equations. Commun Comput Phys 25(2):532–563

    Article  MathSciNet  Google Scholar 

  • Zhang F, Liu T, Liu M (2021a) A high-order maximum-principle-satisfying discontinuous Galerkin method for the level set problem. J Sci Comput 87(2):45

  • Zhang C, Xu Y, Xia Y (2021b) Local discontinuous Galerkin methods to a dispersive system of KdV-type equations. J Sci Comput 86(1):1–43

  • Zheng C, Huang H, Yan J (2016) Third order maximum-principle-satisfying direct discontinuous Galerkin methods for time dependent convection diffusion equations on unstructured triangle mesh. J Comput Phys 308:198–217

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of Heilongjiang Province (LH2020A015).

Author information

Authors and Affiliations

Authors

Contributions

HB: Conceptualization, Methodology, Writing-Review and Editing, Supervision. FZ: Methodology, Writing-Original Draft, Software, Visualization.

Corresponding author

Correspondence to Hui Bi.

Ethics declarations

Conflict of interest

There is no conflict of interest for the authors.

Ethical standard

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

There is no individual participant included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: The proof of some conclusions in Sect. 4

Appendix A: The proof of some conclusions in Sect. 4

1.1 The proof of Lemma 4.3

In this appendix, we report the proof of Lemma 4.3.

Suppose \({U_{i,j}^\gamma } \ge 0\) on each cell \({I_{i,j}}\), it is obvious that \(\bar{u}_{i,j}^n + \frac{{3\varepsilon \Delta t}}{{\Delta {y_j}}}\sum _{\gamma = 1}^3 {U_{i,j}^\gamma } \ge 0\). Therefore, we directly estimate the case for \({U_{i,j}^\gamma } < 0\). If \({U_{i,j}^\gamma } < 0\) on each cell \({I_{i,j}}\), we obtain that \(\bar{u}_{i,j}^n + \frac{{3\varepsilon \Delta t}}{{\Delta {y_j}}}\sum _{\gamma = 1}^3 {U_{i,j}^\gamma } \ge 0\) is equivalent to

$$\begin{aligned} \Delta t \le \frac{{\bar{u}_{i,j}^n}}{{3\varepsilon \left( { - \sum _{\gamma = 1}^3 {U_{i,j}^\gamma } /\Delta {y_j}} \right) }}. \end{aligned}$$

Now, we only need to estimate an upper bound of \(- \frac{1}{{\Delta {y_j}}}\sum _{\gamma = 1}^3 {U_{i,j}^\gamma } \).

$$\begin{aligned}&- \frac{{U_{ i ,j}^\gamma }}{{\Delta {y_j}}} = - \sum \limits _{l = 1}^3 {{w_l}\left[ {\frac{{{\psi ^\gamma }\left( {x_i^l} \right) }}{{\Delta y_j^2}}\int _{{J_j}} {{u_h}\left( {x_i^l, \cdot } \right) s{{\left( {{\eta ^j}\left( y \right) } \right) }_y}dy} } \right. } \nonumber \\&\quad \left. { - 3\left( {\frac{1}{{\Delta y_j^2}} + \frac{3}{{\Delta {y_j}\Delta {y_{j + 1}}}}} \right) {\psi ^\gamma }\left( {x_i^l} \right) {{\tilde{u}}_h}\left( {x_i^l,{y_{j + 1/2}}} \right) } \right] + \left( {\frac{1}{{\Delta y_j^2}} + \frac{1}{{\Delta {y_j}\Delta {y_{j + 1}}}}} \right) F_{i,j}^\gamma \nonumber \\&\quad + \left[ {\frac{1}{{\Delta y_j^3}}W_{i,j}^\gamma u_h^ + \left( {{x_i},{y_{j - 1/2}}} \right) + \frac{1}{{\Delta {y_j}\Delta y_{j + 1}^2}}W_{i,j + 1}^\gamma u_h^ - \left( {{x_i},{y_{j + 1/2}}} \right) } \right] \sum \limits _{l = 1}^3 {{w_l}} s\left( {{\eta _l}} \right) \nonumber \\&\quad - \frac{{{\varphi ^\gamma }\left( {{x_{i - 1/2}}} \right) }}{{\Delta {x_i}\Delta y_j^2}}\sum \limits _{l = 1}^3 {s\left( {{\eta _l}} \right) \sum \limits _{{l_1} = 1}^3 {{w_{{l_1}}}{\psi ^l}\left( {y_j^{{l_1}}} \right) \int _{{I_i}} {{u_h}\left( { \cdot ,y_j^{{l_1}}} \right) s\left( {{\xi ^i}\left( x \right) } \right) dx} } } . \end{aligned}$$
(1)

First of all, we estimate the integral term on cells \(J_j\) in (1) as follows.

$$\begin{aligned}&- \frac{1}{{\Delta y_j^2}}\sum \limits _{l = 1}^3 {{w_l}{\psi ^\gamma }\left( {x_i^l} \right) \int _{{J_j}} {{u_h}\left( {x_i^l, \cdot } \right) s{{\left( {{\eta ^j}\left( y \right) } \right) }_y}dy} } \nonumber \\&\quad \le \frac{2}{{\Delta y_j^3}}\sum \limits _{l = 1}^3 {{w_l}\left| {{\psi ^\gamma }\left( {x_i^l} \right) } \right| \left| {\int _{{J_j}} {{u_h}\left( {x_i^l, \cdot } \right) \left( {3 - 15{\eta ^j}\left( y \right) } \right) dy} } \right| } \nonumber \\&\quad \le \frac{{36}}{{\Delta y_j^3}}\sum \limits _{l = 1}^3 {{w_l}\left| {{\psi ^\gamma }\left( {x_i^l} \right) } \right| \left| {\int _{{J_j}} {{u_h}\left( {x_i^l, \cdot } \right) dy} } \right| } \le \frac{{48\sqrt{15} }}{{\Delta {x_i}\Delta y_j^2}}\sum \limits _{l = 1}^3 {{w_l}\bar{u}_{l,j}^n} \le \frac{{48\sqrt{15} }}{{\Delta x\Delta {y^2}}}\bar{u}_{i,j}^n. \end{aligned}$$
(2)

Notice that the Lagrange interpolation polynomial at three points \(x_i^\gamma \) is taken as \({\varphi ^\gamma }(x)\). Therefore, the penultimate step in (2) follows that \( - \frac{{4\sqrt{15} }}{{3\Delta {x_i}}} \le {\psi ^\gamma }\left( {x_i^l} \right) \le \frac{{4\sqrt{15} }}{{3\Delta {x_i}}}\). Through some simple calculations, we have

$$\begin{aligned} - \frac{2}{3} \le {\varphi ^\gamma }\left( {{x_{i \pm 1/2}}} \right) \le \frac{5}{6}\left( {1 + \frac{{\sqrt{15} }}{5}} \right) , \quad - \frac{3}{2} \le s\left( {{\eta _\gamma }} \right) \le 3\left( {1 + \frac{{\sqrt{15} }}{5}} \right) . \end{aligned}$$

The estimate of the integral term on cells \(I_i\) in (1) is given by

$$\begin{aligned}&- \frac{{{\varphi ^\gamma }\left( {{x_{i - 1/2}}} \right) }}{{\Delta {x_i}\Delta y_j^2}}\sum \limits _{l = 1}^3 {s\left( {{\eta _l}} \right) \sum \limits _{{l_1} = 1}^3 {{w_{{l_1}}}{\psi ^l}\left( {y_j^{{l_1}}} \right) \int _{{I_i}} {{u_h}\left( { \cdot ,y_j^{{l_1}}} \right) s\left( {{\xi ^i}\left( x \right) } \right) dx} } } \nonumber \\&\quad \le \frac{{16\left( {15 + 4\sqrt{15} } \right) }}{{5\Delta {x_i}\Delta y_j^3}}\sum \limits _{l = 1}^3 {\sum \limits _{{l_1} = 1}^3 {{w_{{l_1}}}\left| {\int _{{I_i}} {{u_h}\left( { \cdot ,y_j^{{l_1}}} \right) dx} } \right| } } \nonumber \\&\quad = \frac{{16\left( {15 + 4\sqrt{15} } \right) }}{{5\Delta y_j^3}}\sum \limits _{l = 1}^3 {\sum \limits _{{l_1} = 1}^3 {{w_{{l_1}}}\bar{u}_{i,{l_1}}^n} } \le \frac{{48\left( {15 + 4\sqrt{15} } \right) }}{{5\Delta {y^3}}}\bar{u}_{i,j}^n. \end{aligned}$$
(3)

Similar to (3.16), we can rewrite \({\tilde{u}_h}\left( {x_i^l,{y_{j + 1/2}}} \right) \) as

$$\begin{aligned} {\tilde{u}_h}\left( {x_i^l,{y_{j + 1/2}}} \right) = {u_h}\left( {x_i^l,{y_{j + 1/2}}} \right) = \frac{1}{2}\int _{ - 1}^1 {{u_0}\left( {x_i^l,\eta } \right) z\left( {1,\eta } \right) d\eta }, \end{aligned}$$

where \(z\left( {{\eta _0},\eta } \right) \) is given in (3.16) and \(u_0\) is defined as \({u_0}:S_i^x \times \left[ { - 1,1} \right] \rightarrow \mathbb {R}\).

Then, we estimate the term \(F_{i,j}^\gamma \) as follows.

$$\begin{aligned} F_{i,j}^\gamma&= \frac{{{\varphi ^\gamma }\left( {{x_{i - 1/2}}} \right) }}{{\Delta {x_i}}}\sum \limits _{l = 1}^3 {s\left( {{\eta _l}} \right) {\varphi ^l}\left( {{y_{j + 1/2}}} \right) \sum \limits _{{l_1} = 1}^3 {{w_{{l_1}}}s\left( {{\xi _{{l_1}}}} \right) {{\tilde{u}}_h}\left( {x_i^{{l_1}},{y_{j + 1/2}}} \right) } } \\&\le \!\frac{{\left| {{\varphi ^\gamma }\left( {{x_{i - 1/2}}} \right) } \right| }}{{2\Delta {x_i}}} \!\! \sum \limits _{l = 1}^3 {\left| {s\left( {{\eta _l}} \right) } \right| \! \left| {{\varphi ^l}\! \!\left( {{y_{j + 1/2}}} \right) } \right| \! \sum \limits _{{l_1} = 1}^3 {{w_{{l_1}}}\left| {s\left( {{\xi _{{l_1}}}} \right) } \right| \! \left| {\int _{ - 1}^1 \!\! {{u_0}\left( {x_i^{{l_1}},\eta } \right) \! z\left( {1,\eta } \right) d\eta } } \right| } } \\&\le \frac{{9\left( {31 + 8\sqrt{15} } \right) }}{{2\Delta {x_i}}}\sum \limits _{l = 1}^3 {\sum \limits _{{l_1} = 1}^3 {{w_{{l_1}}}\left| {\int _{ - 1}^1 {{u_0}\left( {x_i^{{l_1}},\eta } \right) d\eta } } \right| } } \\&= \frac{{9\left( {31 + 8\sqrt{15} } \right) }}{{\Delta {x_i}}}\sum \limits _{l = 1}^3 {\sum \limits _{{l_1} = 1}^3 {{w_{{l_1}}}\bar{u}_{{l_1},j}^n} } = \frac{{27\left( {31 + 8\sqrt{15} } \right) }}{{\Delta {x_i}}}\bar{u}_{i,j}^n. \end{aligned}$$

Next, we proceed to estimate the rest of terms in (1).

$$\begin{aligned}&3\left( {\frac{1}{{\Delta y_j^2}} \!+\! \frac{3}{{\Delta {y_j}\Delta {y_{j + 1}}}}} \right) \sum \limits _{l = 1}^3 {{w_l}{\psi ^\gamma }\left( {x_i^l} \right) {{\tilde{u}}_h}\left( {x_i^l,{y_{j + 1/2}}} \right) } \!+\! \left( {\frac{1}{{\Delta y_j^2}} \!+\! \frac{1}{{\Delta {y_j}\Delta {y_{j + 1}}}}} \right) F_{i,j}^\gamma \\&\quad \quad + \left[ {\frac{1}{{\Delta y_j^3}}W_{i,j}^\gamma u_h^ + \left( {{x_i},{y_{j - 1/2}}} \right) + \frac{1}{{\Delta {y_j}\Delta y_{j + 1}^2}}W_{i,j + 1}^\gamma u_h^ - \left( {{x_i},{y_{j + 1/2}}} \right) } \right] \sum \limits _{l = 1}^3 {{w_l}} s\left( {{\eta _l}} \right) \\&\quad \le \frac{3}{2}\left( {\frac{1}{{\Delta y_j^2}} + \frac{3}{{\Delta {y_j}\Delta {y_{j + 1}}}}} \right) \sum \limits _{l = 1}^3 {{w_l}\left| {{\psi ^\gamma }\left( {x_i^l} \right) } \right| \left| {\int _{ - 1}^1 {{u_0}\left( {x_i^l,\eta } \right) z\left( {1,\eta } \right) d\eta } } \right| } \\&\quad \quad + \left( {\frac{1}{{\Delta y_j^2}} + \frac{1}{{\Delta {y_j}\Delta {y_{j + 1}}}}} \right) \frac{{27\left( {31 + 8\sqrt{15} } \right) }}{{\Delta {x_i}}}\bar{u}_{i,j}^n\\&\quad \quad + \left| {{\varphi ^\gamma }\left( {{x_{i - 1/2}}} \right) } \right| \left[ {\int _{ - 1}^1 {{u_0}\left( {{x_i},\eta } \right) \left( {\frac{{\left| {{\alpha _{i,j - 1/2}}} \right| \left| {z\left( { - 1,\eta } \right) } \right| }}{{\Delta y_j^3}} + \frac{{\left| {{\alpha _{i,j + 1/2}}} \right| \left| {z\left( {1,\eta } \right) } \right| }}{{\Delta {y_j}\Delta y_{j + 1}^2}}} \right) d\eta } } \right] , \end{aligned}$$

which follows the upper bound of \(F_{i,j}^\gamma \) and

$$\begin{aligned} \sum \limits _{l = 1}^3 {{w_l}s\left( {{\eta _l}} \right) \approx \int _{ - 1}^1 {s\left( \eta \right) d\eta } } = 2. \end{aligned}$$

Finally, the result of estimating the rest terms is given by

$$\begin{aligned}&3\left( {\frac{1}{{\Delta y_j^2}} \!+\! \frac{3}{{\Delta {y_j}\Delta {y_{j + 1}}}}} \right) \sum \limits _{l = 1}^3 {{w_l}{\psi ^\gamma }\left( {x_i^l} \right) {{\tilde{u}}_h}\left( {x_i^l,{y_{j + 1/2}}} \right) } \!+\! \left( {\frac{1}{{\Delta y_j^2}} \!+\! \frac{1}{{\Delta {y_j}\Delta {y_{j + 1}}}}} \right) F_{i,j}^\gamma \nonumber \\&\quad \quad + \left[ {\frac{1}{{\Delta y_j^3}}W_{i,j}^\gamma u_h^ + \left( {{x_i},{y_{j - 1/2}}} \right) + \frac{1}{{\Delta {y_j}\Delta y_{j + 1}^2}}W_{i,j + 1}^\gamma u_h^ - \left( {{x_i},{y_{j + 1/2}}} \right) } \right] \sum \limits _{l = 1}^3 {{w_l}} s\left( {{\eta _l}} \right) \nonumber \\&\quad \le \frac{{72\sqrt{15} }}{{\Delta x\Delta {y^2}}}\sum \limits _{l = 1}^3 {{w_l}\left| {\int _{ - 1}^1 {{u_0}\left( {x_i^l,\eta } \right) d\eta } } \right| } + \frac{{54\left( {31 + 8\sqrt{15} } \right) }}{{\Delta x\Delta {y^2}}}\bar{u}_{i,j}^n \nonumber \\&\quad \quad + \frac{{3\left( {5 + \sqrt{15} } \right) {{\max }_{i,j}}\left| {{\alpha _{i,j - 1/2}}} \right| }}{{\Delta {y^3}}}\left| {\int _{ - 1}^1 {{u_0}\left( {{x_i},\eta } \right) d\eta } } \right| \nonumber \\&\quad = \frac{{144\sqrt{15} }}{{\Delta x\Delta {y^2}}}\sum \limits _{l = 1}^3 {{w_l}\bar{u}_{l,j}^n} + \frac{{54\left( {31 + 8\sqrt{15} } \right) }}{{\Delta x\Delta {y^2}}}\bar{u}_{i,j}^n + \frac{{6\left( {5 + \sqrt{15} } \right) {{\max }_{i,j}}\left| {{\alpha _{i,j - 1/2}}} \right| }}{{\Delta {y^3}}}\bar{u}_{\mathcal{L},j}^n \nonumber \\&\quad = \frac{{18\left( {93 + 32\sqrt{15} } \right) + 3\left( {5 + \sqrt{15} } \right) \tau {{\max }_{i,j}}\left| {{\alpha _{i,j - 1/2}}} \right| }}{{\Delta x\Delta {y^2}}}\bar{u}_{i,j}^n, \end{aligned}$$
(4)

where \(\bar{u}_{i,j}^n\) can be approximated as \(2\bar{u}_{\mathcal{L},j}^n\) by one-point Gaussian quadrature. According to (2), (3) and (4), we have

$$\begin{aligned}&- \frac{1}{{\Delta {y_j}}}\sum \limits _{\gamma = 1}^3 {U_{*,j}^\gamma } \\&\quad \le \frac{{90\left( {279 + 104\sqrt{15} } \right) + 9\tau \left[ {16\left( {15 + 4\sqrt{15} } \right) + 5\left( {5 + \sqrt{15} } \right) {{\max }_{i,j}}\left| {{\alpha _{i,j - 1/2}}} \right| } \right] }}{{5\Delta x\Delta {y^2}}}\bar{u}_{i,j}^n, \end{aligned}$$

and thus can obtain the conclusion.

1.2 The proof of Lemma 4.4

In this appendix, we report the proof of Lemma 4.4.

1.3 The estimate of terms \(U_{i + 1,j}^\gamma \)

First of all, we consider the lower bound of \(F_{i + 1,j}^\gamma \) as follows.

$$\begin{aligned} F_{i + 1,j}^\gamma&= \frac{{{\varphi ^\gamma }\left( {{x_{i + 1/2}}} \right) }}{{\Delta {x_{i + 1}}}}\sum \limits _{l = 1}^3 {s\left( {{\eta _l}} \right) {\varphi ^l}\left( {{y_{j + 1/2}}} \right) \sum \limits _{{l_1} = 1}^3 {{w_{{l_1}}}s\left( {{\xi _{{l_1}}}} \right) {{\tilde{u}}_h}\left( {x_{i + 1}^{{l_1}},{y_{j + 1/2}}} \right) } } \\&= \frac{{{\varphi ^\gamma }\left( {{x_{i + 1/2}}} \right) }}{{2\Delta {x_{i + 1}}}}\sum \limits _{l = 1}^3 {s\left( {{\eta _l}} \right) {\varphi ^l}\left( {{y_{j + 1/2}}} \right) \sum \limits _{{l_1} = 1}^3 {{w_{{l_1}}}s\left( {{\xi _{{l_1}}}} \right) \int _{ - 1}^1 \! \! \!{{u_1}\left( {x_{i + 1}^{{l_1}},\eta } \right) z\left( {1,\eta } \right) d\eta } } } \\&\ge \frac{1}{2}\sum \limits _{l = 1}^3 {\sum \limits _{{l_1} = 1}^3 {{w_{{l_1}}}\int _{ - 1}^1 {{u_1}\left( {x_{i + 1}^{{l_1}},\eta } \right) d\eta \mathop {\min }\limits _{\gamma ,l,{l_1} \in \left\{ {1,2,3} \right\} } } } } \left\{ {\mathop {\min }\limits _{i,j} \tilde{Z}_1} \right\} \\&= \sum \limits _{l = 1}^3 {\sum \limits _{{l_1} = 1}^3 {{w_{{l_1}}}\bar{u}_{{l_1},j}^n} } \mathop {\min }\limits _{\gamma ,l,{l_1} \in \left\{ {1,2,3} \right\} } \left\{ {\mathop {\min }\limits _{i,j} \tilde{Z}_1} \right\} = 3\bar{u}_{i + 1,j}^n\mathop {\min }\limits _{\gamma ,l,{l_1} \in \left\{ {1,2,3} \right\} } \left\{ {\mathop {\min }\limits _{i,j} \tilde{Z}_1} \right\} , \end{aligned}$$

where

$${\tilde{Z}_1} = \frac{{s\left( {{\xi _{{l_1}}}} \right) {\varphi ^\gamma }\left( {{x_{i + 1/2}}} \right) s\left( {{\eta _l}} \right) {\varphi ^l}\left( {{y_{j + 1/2}}} \right) }}{{\Delta {x_{i + 1}}}}z\left( {1,\eta } \right) .$$

Then, the estimate of the integral term in \(U_{i + 1,j}^\gamma \) is given by

$$\begin{aligned}&- \frac{{{\varphi ^\gamma }\left( {{x_{i + 1/2}}} \right) }}{{\Delta {x_{i + 1}}\Delta {y_j}}}\sum \limits _{l = 1}^3 {s\left( {{\eta _l}} \right) \sum \limits _{{l_1} = 1}^3 {{w_{{l_1}}}{\psi ^l}\left( {y_j^{{l_1}}} \right) \int _{{I_{i + 1}}} {u_h}\left( { \cdot ,y_j^{{l_1}}} \right) s\left( {{\xi ^{i + 1}}\left( x \right) } \right) dx} } \\&\quad \ge \frac{1}{{\Delta {x_{i + 1}}}}\sum \limits _{l = 1}^3 {\sum \limits _{{l_1} = 1}^3 {{w_{{l_1}}}\int _{{I_{i + 1}}} {u_h}\left( { \cdot ,y_j^{{l_1}}} \right) dx} } \mathop {\min }\limits _{\gamma ,l,{l_1} \in \left\{ {1,2,3} \right\} } \left\{ {\mathop {\min }\limits _{i,j} {\tilde{Z}_0}} \right\} \\&\quad = \sum \limits _{l = 1}^3 {\sum \limits _{{l_1} = 1}^3 {{w_{{l_1}}}\bar{u}_{i + 1,{l_1}}^n} } \mathop {\min }\limits _{\gamma ,l,{l_1} \in \left\{ {1,2,3} \right\} } \left\{ {\mathop {\min }\limits _{i,j} {\tilde{Z}_0}} \right\} = 3\bar{u}_{i + 1,j}^n\mathop {\min }\limits _{\gamma ,l,{l_1} \in \left\{ {1,2,3} \right\} } \left\{ {\mathop {\min }\limits _{i,j} {\tilde{Z}_0}} \right\} , \end{aligned}$$

where

$$\begin{aligned} {\tilde{Z}_0} = - \frac{{{\varphi ^\gamma }\left( {{x_{i + 1/2}}} \right) s\left( {{\eta _l}} \right) {\psi ^l}\left( {y_j^{{l_1}}} \right) }}{{\Delta {y_j}}}s\left( \xi \right) . \end{aligned}$$

Next, we proceed to estimate the rest terms in \(U_{i + 1,j}^\gamma \).

$$\begin{aligned}&{\varphi ^\gamma } \left( {{x_{i + 1/2}}} \right) \!\! \left[ {\frac{{{\alpha _{i + 1,j - 1/2}}}}{{\Delta y_j^2}}u_h^ + \left( {{x_{i + 1}},{y_{j - 1/2}}} \right) } \right. \left. { \!+ \frac{{{\alpha _{i + 1,j + 1/2}}}}{{\Delta y_{j + 1}^2}}u_h^ - \! \left( {{x_{i + 1}},{y_{j + 1/2}}} \right) } \right] \!\! \sum \limits _{l = 1}^3 {{w_l}} s\left( {{\eta _l}} \right) \\&\quad = {\varphi ^\gamma }\left( {{x_{i + 1/2}}} \right) \left[ {\int _{ - 1}^1 {{u_1}\left( {{x_{i + 1}},\eta } \right) \left( {\frac{{{\alpha _{i + 1,j - 1/2}}}}{{\Delta y_j^2}}z\left( { - 1,\eta } \right) + \frac{{{\alpha _{i + 1,j + 1/2}}}}{{\Delta y_{j + 1}^2}}z\left( {1,\eta } \right) } \right) d\eta } } \right] \\&\quad \ge 2\bar{u}_{L,j}^n\mathop {\min }\limits _{\gamma ,l,{l_1} \in \left\{ {1,2,3} \right\} } \left\{ {\mathop {\min }\limits _{i,j} {\tilde{Z}_2}} \right\} = \bar{u}_{i + 1,j}^n\mathop {\min }\limits _{\gamma ,l,{l_1} \in \left\{ {1,2,3} \right\} } \left\{ {\mathop {\min }\limits _{i,j} {\tilde{Z}_2}} \right\} , \end{aligned}$$

where

$$\begin{aligned} {\tilde{Z}_2} = \frac{{{\varphi ^\gamma }\left( {{x_{i + 1/2}}} \right) {\alpha _{i + 1,j - 1/2}}}}{{\Delta y_j^2}}z\left( { - 1,\eta } \right) + \frac{{{\varphi ^\gamma }\left( {{x_{i + 1/2}}} \right) {\alpha _{i + 1,j + 1/2}}}}{{\Delta y_{j + 1}^2}}z\left( {1,\eta } \right) . \end{aligned}$$

Finally, the result of estimating \(U_{i + 1,j}^\gamma \) is given by

$$\begin{aligned} U_{i + 1,j}^\gamma \ge \bar{u}_{i + 1,j}^n\mathop {\min }\limits _{\gamma ,l,{l_1} \in \left\{ {1,2,3} \right\} } \left\{ {\mathop {\min }\limits _{i,j} Z_1} \right\} , \end{aligned}$$

where \(Z_1 = 3{\tilde{Z}_0} + {\tilde{Z}_2} + 3\left( {\frac{1}{{\Delta {y_j}}} + \frac{1}{{\Delta {y_{j + 1}}}}} \right) {\tilde{Z}_1}\). Obviously, \(U_{i + 1,j}^\gamma \ge 0\) is equivalent to \(Z_1 \ge 0\). We denote \({\Gamma _{i,j}} = \frac{{\Delta {y_j}\Delta {y_{j + 1}} + \Delta y_j^2}}{{\Delta {x_{i + 1}}\Delta {y_{j + 1}}}}\). Notice that \({\Gamma _{i,j}} = 2/\tau \) for uniform meshes. Thus, the inequality \(Z_1 \ge 0\) further yields

$$\begin{aligned} {g_1}\left( {d{y_j},{\Gamma _{i,j}},{\alpha _{i + 1,j - 1/2}},{\alpha _{i + 1,j + 1/2}}} \right) = \Delta y_j^2{Z_1} \ge 0. \end{aligned}$$

1.4 The estimate of terms \(U_{i,j-1}^\gamma \)

The result of estimating \(U_{i,j-1}^\gamma \) is given by

$$\begin{aligned} U_{i,j-1}^\gamma \ge \bar{u}_{i,j-1}^n\mathop {\min }\limits _{\gamma ,l,{l_1} \in \left\{ {1,2,3} \right\} } \left\{ {\mathop {\min }\limits _{i,j} Z_2} \right\} , \end{aligned}$$

where

$$\begin{aligned} Z_2 = \left[ {9{\psi ^\gamma }\left( {x_i^l} \right) \!+\! \frac{{{\varphi ^\gamma }\left( {{x_{i - 1/2}}} \right) {\alpha _{i,j - 1/2}}}}{{\Delta {y_j}}} \!+\! \frac{{3{\varphi ^\gamma }\left( {{x_{i - 1/2}}} \right) s\left( {{\xi _{{l_1}}}} \right) {\varphi ^l}\left( {{y_{j - 1/2}}} \right) s\left( {{\eta _l}} \right) }}{{\Delta {x_i}}}} \right] \!z\left( {1,\eta } \right) , \end{aligned}$$

which further yields \({g_2}\left( {{\tau _{i,j}},{\alpha _{i,j - 1/2}}} \right) = \Delta {x_i}{Z_2} \ge 0\).

1.5 The estimate of terms \(U_{i+1,j-1}^\gamma \)

The result of estimating \(U_{i+1,j-1}^\gamma \) is given by

$$\begin{aligned} U_{i+1,j-1}^\gamma \ge \bar{u}_{i+1,j-1}^n\mathop {\min }\limits _{\gamma ,l,{l_1} \in \left\{ {1,2,3} \right\} } \left\{ {\mathop {\min }\limits _{i,j} Z_3} \right\} , \end{aligned}$$

where

$$\begin{aligned} Z_3 = - \left[ {\frac{{{\varphi ^\gamma }\left( {{x_{i + 1/2}}} \right) {\alpha _{i + 1,j - 1/2}}}}{{\Delta {y_j}}} + \frac{{3{\varphi ^\gamma }\left( {{x_{i + 1/2}}} \right) s\left( {{\xi _{{l_1}}}} \right) {\varphi ^l}\left( {{y_{j - 1/2}}} \right) s\left( {{\eta _l}} \right) }}{{\Delta {x_{i + 1}}}}} \right] z\left( {1,\eta } \right) , \end{aligned}$$

which further yields \({g_3}\left( {{\tau _{i + 1,j}},{\alpha _{i + 1,j - 1/2}}} \right) = \Delta {x_{i + 1}}{Z_3} \ge 0\).

1.6 The estimate of terms \(U_{i,j+1}^\gamma \)

The result of estimating \(U_{i,j+1}^\gamma \) is given by

$$\begin{aligned} U_{i,j+1}^\gamma \ge \bar{u}_{i,j+1}^n\mathop {\min }\limits _{\gamma ,l,{l_1} \in \left\{ {1,2,3} \right\} } \left\{ {\mathop {\min }\limits _{i,j} Z_4} \right\} , \end{aligned}$$

where

$$\begin{aligned} Z_4&= 3\left( {{\psi ^\gamma }\left( {x_i^l} \right) + \frac{{{\varphi ^\gamma }\left( {{x_{i - 1/2}}} \right) s\left( {{\xi _{{l_1}}}} \right) {\varphi ^l}\left( {{y_{j + 3/2}}} \right) s\left( {{\eta _l}} \right) }}{{\Delta {x_i}}}} \right) z\left( {1,\eta } \right) \\&\quad + 2{\psi ^\gamma }\left( {x_i^l} \right) \left( {3 - 15\eta } \right) + \left( {\frac{{{\alpha _{i,j + 1/2}}}}{{\Delta {y_{j + 1}}}}z\left( { - 1,\eta } \right) - 3s\left( {{\eta _l}} \right) {\psi ^l}\left( {y_{j + 1}^{{l_1}}} \right) s\left( \xi \right) } \right) {\varphi ^\gamma }\left( {{x_{i - 1/2}}} \right) , \end{aligned}$$

which further yields \({g_4}\left( {{\tau _{i,j + 1}},{\alpha _{i,j + 1/2}}} \right) = \Delta {x_i}{Z_4} \ge 0\).

1.7 The estimate of terms \(U_{i+1,j+1}^\gamma \)

The result of estimating \(U_{i+1,j+1}^\gamma \) is given by

$$\begin{aligned} U_{i+1,j+1}^\gamma \ge \bar{u}_{i+1,j+1}^n\mathop {\min }\limits _{\gamma ,l,{l_1} \in \left\{ {1,2,3} \right\} } \left\{ {\mathop {\min }\limits _{i,j} Z_5} \right\} , \end{aligned}$$

where

$$\begin{aligned} Z_5&= {\varphi ^\gamma }\left( {{x_{i + 1/2}}} \right) \left( {3s\left( {{\eta _l}} \right) {\psi ^l}\left( {y_{j + 1}^{{l_1}}} \right) s\left( \xi \right) - \frac{{{\varphi ^\gamma }\left( {{x_{i + 1/2}}} \right) {\alpha _{i + 1,j + 1/2}}}}{{\Delta {y_{j + 1}}}}z\left( { - 1,\eta } \right) } \right) \\&\quad - \frac{{3{\varphi ^\gamma }\left( {{x_{i + 1/2}}} \right) s\left( {{\xi _{{l_1}}}} \right) {\varphi ^l}\left( {{y_{j + 3/2}}} \right) s\left( {{\eta _l}} \right) }}{{\Delta {x_{i + 1}}}}z\left( {1,\eta } \right) , \end{aligned}$$

which further yields \({g_5}\left( {{\tau _{i + 1,j + 1}},{\alpha _{i + 1,j + 1/2}}} \right) = \Delta {x_{i + 1}}{Z_5} \ge 0\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, H., Zhao, F. Bound-preserving schemes for \(P^2\) local discontinuous Galerkin discretizations of KdV-type equations. Comp. Appl. Math. 44, 46 (2025). https://doi.org/10.1007/s40314-024-03002-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-024-03002-z

Keywords

Mathematics Subject Classification

Navigation