[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Coexistence of singular cycles in a class of three-dimensional piecewise affine systems

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Singular cycles (homoclinic orbits and heteroclinic cycles) play an important role in the study of chaotic dynamics of dynamical systems. This paper provides the coexistence of singular cycles that intersect the switching manifold transversely at two points in a class of three-dimensional two-zone piecewise affine systems. Moreover, the switching manifold of the systems is constructed by two perpendicular planes. Different to the three-dimensional piecewise affine systems with a switching plane, the system can ensure the coexistence of two homoclinic orbits to the same one equilibrium point and two heteroclinic cycles constructing by three heteroclinic orbits. In addition, three examples with simulations of the singular cycles are provided to illustrate the effectiveness of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bernardo MD, Budd CJ, Champneys AR, Kowalczyk P (2008) Piecewise-smooth dynamical systems: theory and applications. Springer, LDN

  • Cao Y, Chung K, Xu J (2011) A novel construction of homoclinic and heteroclinic orbits in nonlinear oscillators by a perturbation-incremental method. Nonlinear Dyn 64:221–236

    Article  MathSciNet  Google Scholar 

  • Carmona V, Fernández-Sánchez F, Garcia-Medina E, Teruel AE (2010) Existence of homoclinic connections in continuous piecewise linear systems. Chaos 20(1):013124

    Article  MathSciNet  Google Scholar 

  • Carmona V, Fernández-Sánchez F, Garcia-Medina E (2017) Including homoclinic connections and T-point heteroclinic cycles in the same global problem for a reversible family of piecewise linear systems. Appl Math Comput 296:33–41

    MathSciNet  Google Scholar 

  • Chen YL, Wang L, Yang X-S (2018) On the existence of heteroclinic cycles in some class of 3-dimensional piecewise affine systems with two switching planes. Nonlinear Dyn 91(1):67–79

    Article  MathSciNet  Google Scholar 

  • Dong HM, Zhang TS, Liu XB (2022a) Bifurcations of double heterodimensional cycles with three saddle points. J Appl Anal Comput 12(6):2143–2162

  • Dong H, Zhang T, Liu X (2022b) Bifurcations of double heterodimensional cycles with three saddle points. J Appl Anal Comput 12(6):2143–2162

  • Henao MM, Cristiano R, Pagano DJ (2022) Bifurcation analysis of 3D-PWS systems with two transversal switching boundaries: a case study in power electronics. Physica D 442(15):133505

    Article  MathSciNet  Google Scholar 

  • Huan SM, Li QD, Yang X-S (2012) Chaos in three-dimensional hybrid systems and design of chaos generators. Nonlinear Dyn 69(4):1915–1927

    Article  MathSciNet  Google Scholar 

  • Leonov GA (2014) Fishing principle for homoclinic and heteroclinic trajectories. Nonlinear Dyn 78:2751–2758

    Article  MathSciNet  Google Scholar 

  • Leonov GA, Kuznetsova NV, Mokaev TN (2015) Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity. Commun Nonlinear Sci Numer Simul 28(1):166–174

    Article  MathSciNet  Google Scholar 

  • Li XY, Wang HJ (2011) Homoclinic and heteroclinic orbits and bifurcations of a new Lorenz-type system. Int J Bifurc Chaos 21(9):2695–2712

    Article  MathSciNet  Google Scholar 

  • Li XY, Wang HJ (2020) A three-dimensional nonlinear system with a single heteroclinic trajectory. J Appl Anal Comput 10(1):249–266

    MathSciNet  Google Scholar 

  • Liu XB (2014) Bifurcations near the weak type heterodimensional cycle. Int J Bifurc Chaos 24(09):1450112

    Article  MathSciNet  Google Scholar 

  • Llibre J, Ponce E, Teruel AE (2007) Horseshoes near homoclinic orbits for piecewise linear differential systems in \(R^3\). Int J Bifurc Chaos 17(04):1171–1184

    Article  Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. Atmos Sci 20(2):130–141

    Article  MathSciNet  Google Scholar 

  • Lü JH, Chen GR (2006) Generating multiscroll chaotic attractors: theories, methods and applications. Int J Bifurc Chaos 16(04):775–858

    Article  MathSciNet  Google Scholar 

  • Lu K, Xu WJ (2022) Coexisting singular cycles in a class of three-dimensional three-zone piecewise affine systems. Discrete Contin Dyn Syst Ser B 27(12):7315–7349

    Article  MathSciNet  Google Scholar 

  • Lu K, Xu WJ, Yang QG (2020) Chaos generated by a class of 3D three-zone piecewise affine systems with coexisting singular cycles. Int J Bifurc Chaos 30(14):2050209

    Article  MathSciNet  Google Scholar 

  • Lu K, Xu WJ, Yang T, Xiang QM (2022) Chaos emerges from coexisting homoclinic cycles for a class of 3D piecewise systems. Chaos Soliton Fract 162:112470

    Article  MathSciNet  Google Scholar 

  • Singh JP, Roy BK (2019) Simplest hyperchaotic system with only one piecewise linear term. Electron Lett 55(7):378–380

    Article  Google Scholar 

  • Tigan G, Llibre J (2016) Heteroclinic, homoclinic and closed orbits in the Chen system. Int J Bifurc Chaos 26(04):1650072

    Article  MathSciNet  Google Scholar 

  • Tigan G, Turaev D (2011) Analytical search for homoclinic bifurcations in the Shimizu-Morioka model. Physica D 240(12):895–989

    Article  MathSciNet  Google Scholar 

  • Wang L, Yang X-S (2017) Heteroclinic cycles in a class of 3-dimensional piecewise affine systems. Nonlinear Anal Hybrid Syst 23:44–60

    Article  MathSciNet  Google Scholar 

  • Wang C, Zhang X (2019) Canards, heteroclinic and homoclinic orbits for a slow-fast predator-prey model of generalized Holling type III. J Differ Equ 267:3397–3441

    Article  MathSciNet  Google Scholar 

  • Wang FR, Zhou ZC, Zhang W, Moroz I (2023) Coexistence of three heteroclinic cycles and chaos analyses for a class of 3D piecewise affine systems. Chaos 33(2):023108

    Article  MathSciNet  Google Scholar 

  • Wiggins S (1988) Global bifurcations and chaos analytical methods. Springer, New York

    Book  Google Scholar 

  • Wu T, Yang X-S (2016) A new class of 3-dimensional piecewise affine systems with homoclinic orbits. Discrete Contin Dyn Syst 36(9):5119–5129

    Article  MathSciNet  Google Scholar 

  • Wu T, Yang X-S (2016) A new class of 3-dimensional piecewise affine systems with homoclinic orbits. Discrete Contin Dyn Syst 36(9):5119–5129

    Article  MathSciNet  Google Scholar 

  • Wu T, Yang X-S (2016) On the existence of bifocal heteroclinic cycles in a class of four-dimensional piecewise affine systems. Chaos 26:053104

    Article  MathSciNet  Google Scholar 

  • Wu T, Yang X-S (2018) On the existence of homoclinic orbits in n-dimensional piecewise affine systems. Nonlinear Anal Hybrid Syst 27:366–389

    Article  MathSciNet  Google Scholar 

  • Wu T, Yang X-S (2018) Horseshoes in 4-dimensional piecewise affine systems with bifocal heteroclinic cycles. Chaos 28:113120

    Article  MathSciNet  Google Scholar 

  • Yu S, Lü JH, Chen GR, Yu X (2011) Design of grid multi-wing butterfly chaotic attractors from piecewise Lü system based on switching control and heteroclinic orbit. IEEE ISCAS, 1335–1338

  • Zhu CR, Zhang WN (2020) Multiple chaos arising from single-parametric perturbation of a degenerate homoclinic orbit. J Differ Equ 268(10):5672–5703

    Article  MathSciNet  Google Scholar 

  • Zhu B, Wei ZC, Escalante-González RJ, Kuznetsov NV (2020) Existence of homoclinic orbits and heteroclinic cycle in a class of three-dimensional piecewise linear systems with three switching manifolds. Chaos 30(12):123143

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank editors and referees for their kind careful review and valuable suggestions. This work is supported by National Natural Science Foundation of China (11801329), Natural Science Foundation of Shandong province (ZR2018BA002) and the University Natural Sciences Research Project of Anhui Province (KJ2021A0996).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiantian Wu.

Ethics declarations

Conflict of interest

There is no Conflict of interest in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Liu, R. & Wu, T. Coexistence of singular cycles in a class of three-dimensional piecewise affine systems. Comp. Appl. Math. 43, 292 (2024). https://doi.org/10.1007/s40314-024-02824-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-024-02824-1

Keywords

Navigation