[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Numerical analysis of a reaction–diffusion susceptible–infected–susceptible epidemic model

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper presents the numerical properties of a reaction–diffusion susceptible–infected–susceptible epidemic model. Comparing with existing literature, our numerical scheme gains advantage in terms of preserving the biological meanings (such as positivity or invariance of total population) unconditionally. An implicit–explicit technique is implemented in the time integration, which ensures the numerical positivity without CFL conditions while reducing the computation complexity. The solvability, convergence in finite time and the long-time behaviors of numerical solutions are investigated. A threshold value \(R_{0}^{\Delta x}\) for the long-time dynamics of numerical solutions is proposed, which is named as a numerical basic reproduction number. It is proved that the numerical disease-free equilibrium is locally asymptotically stable if \(R_{0}^{\Delta x}<1\) and unstable if \(R_{0}^{\Delta x}>1\). It is presented that \(R_{0}^{\Delta x}\) shares the same monotonicity and limits as the basic reproduction number of the underlying model and converges to the exact one. Some numerical experiments are given in the end to confirm the conclusions and explore the stability of the endemic equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  • Allen LJS, Bolker BM, Lou Y, Nevai AL (2008) Asymptotic profiles of the steady states for an SIS epidemic reaction–diffusion model. Discrete Contin Dyn Syst 21:1–20

    Article  MathSciNet  MATH  Google Scholar 

  • Boscarino S, Bürger R, Mulet P, Russo G, Villada LM (2015) Linearly implicit IMEX Runge–Kutta methods for a class of degenerate convection–diffusion problems. SIAM J Sci Comput 37:B305–B331

    Article  MathSciNet  MATH  Google Scholar 

  • Brauer F, Chavez CC (2001) Mathematical models in population biology and epidemiology. Springer, New York

    Book  MATH  Google Scholar 

  • Bürger R, Mulet P, Villada LM (2013) Regularized nonlinear solvers for IMEX methods applied to diffusively corrected multispecies kinematic flow models. SIAM J Sci Comput 35(3):B751–B777

    Article  MathSciNet  MATH  Google Scholar 

  • Bürger R, Inzunza D, Mulet P, Villada LM (2019) Implicit-explicit methods for a class of nonlinear nonlocal gradient flow equations modelling collective behaviour. Appl Numer Math 144:234–252

    Article  MathSciNet  MATH  Google Scholar 

  • Chen S, Shi J (2020) Asymptotic profiles of basic reproduction number for epidemic spreading in heterogeneous environment. SIAM J Appl Math 80:1247–1271

    Article  MathSciNet  MATH  Google Scholar 

  • Deng K, Wu Y (2016) Dynamics of a susceptible-infected-susceptible epidemic reaction–diffusion model. Proc R Soc Edinb A 146(05):929–946

    Article  MathSciNet  MATH  Google Scholar 

  • Galeone L (1983) The use of positive matrices for the analysis of the large time behavior of the numerical solution of reaction–diffusion systems. Math Comput 41(164):461–472

    Article  MathSciNet  MATH  Google Scholar 

  • Galeone L, Lopez L (1982) Decay to spatially homogeneous states for the numerical solution of reaction–diffusion systems. Calcolo 19(2):193–208

    Article  MathSciNet  MATH  Google Scholar 

  • Hoff D (1978) Stability and convergence of finite difference methods for systems of nonlinear reaction-diffusion equations. SIAM J Numer Anal 15(6):1161–1177

    Article  MathSciNet  MATH  Google Scholar 

  • Li H, Rui P, Wang FB (2017a) Varying total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model. J Differ Equ 262(2):885–913

    Article  MathSciNet  MATH  Google Scholar 

  • Li B, Li H, Tong Y (2017b) Analysis on a diffusive SIS epidemic model with logistic source. Z Angew Math Phys 68:68–96

    Article  MathSciNet  MATH  Google Scholar 

  • Luciano L (1983) Stability and asymptotic behaviour for the numerical solution of a reaction diffusion model for a deterministic diffusive epidemic. IMA J Numer Anal 3:341–351

    Article  MathSciNet  MATH  Google Scholar 

  • Magal P, Webb GF, Wu Y (2019) On the basic reproduction number of reaction–diffusion epidemic models. SIAM J Appl Math 79:284–304

    Article  MathSciNet  MATH  Google Scholar 

  • Poole G, Boullion T (1974) A survey on M-matrices. SIAM Rev 16:419–427

    Article  MathSciNet  MATH  Google Scholar 

  • Rui P, Liu S (2009) Global stability of the steady states of an SIS epidemic reaction–diffusion model. Nonlinear Anal 71(1–2):239–247

    MathSciNet  MATH  Google Scholar 

  • Rui P, Zhao XQ (2012) A reaction–diffusion SIS epidemic model in a time-periodic environment. Nonlinearity 25(5):1451–1471

    Article  MathSciNet  MATH  Google Scholar 

  • Santonja FJ, Sánchez E, Rubio M, Morera JL (2010) Alcohol consumption in Spain and its economic cost: a mathematical modeling approach. Math Comput Model 52(7–8):999–1003

    Article  MathSciNet  MATH  Google Scholar 

  • Tuncer N, Martcheva M (2012) Analytical and numerical approaches to coexistence of strains in a two-strain SIS model with diffusion. J Biol Dynam 6(2):406–439

    Article  MathSciNet  MATH  Google Scholar 

  • Varah JM (1975) A lower bound for the smallest singular value of a matrix. Linear Algorithm Appl 11(1):3–5

    Article  MathSciNet  MATH  Google Scholar 

  • Wang W, Zhao XQ (2012) Basic reproduction numbers for reaction-diffusion epidemic models. SIAM J Appl Dyn Syst 11:1652–1673

    Article  MathSciNet  MATH  Google Scholar 

  • Yang C, Wang J (2020) Basic reproduction numbers for a class of reaction–diffusion epidemic models. B Math Biol 82(8)

  • Zhang J, Cui R (2020) Qualitative analysis on a diffusive SIS epidemic system with logistic source and spontaneous infection in a heterogeneous environment. Nonlinear Anal-Real 55:103115

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Liu.

Additional information

Communicated by Rafael Villanueva.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yang, Z.W. Numerical analysis of a reaction–diffusion susceptible–infected–susceptible epidemic model. Comp. Appl. Math. 41, 392 (2022). https://doi.org/10.1007/s40314-022-02113-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-02113-9

Keywords

Mathematics Subject Classification

Navigation