[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Infinity norm bounds for the inverse for \(\textrm{GSDD}_1\) matrices using scaling matrices

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Many subclasses of H-matrices have already been investigated in application areas of linear algebra. One of them is \(\textrm{SDD}_1\) matrices given in Peña (Adv Comput Math 35:357–373, 2011). In this paper, a new subclass of H-matrices, i.e., generalized \(\textrm{SDD}_1\)(\(\textrm{GSDD}_1\)) matrices, is considered. The relationship between \(\textrm{GSDD}_1\) matrices and other subclasses of H-matrices is analyzed. Infinity norm bounds for the inverse of a \(\textrm{GSDD}_1\) matrix A are given, using a scaling matrix that transforms A into a strictly diagonally dominant matrix. The given scaling matrix is also utilized to obtain error bounds for the linear complementarity problems when the related matrices are \(\textrm{GSDD}_1\) matrices. Numerical examples show that the obtained results can improve other existing bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berman A, Plemmons RJ (1979) Nonnegative matrix in the mathematical sciences. Academic Press, New York

    MATH  Google Scholar 

  • Chen XJ, Xiang SH (2006) Computation of error bounds for \(P\)-matrix linear complementarity problems. Math Program Ser A 106:513–525

    Article  MathSciNet  MATH  Google Scholar 

  • Chen T, Li W, Wu X, Vong S (2015) Error bounds for linear complementarity problems of \(MB\)-matrices. Numer Algor 70(2):341–356

    Article  MathSciNet  MATH  Google Scholar 

  • Chen XY, Li Y, Liu L, Wang YQ (2022) Infinity norm upper bounds for the inverse of \({\rm SDD}_1\) matrices. AIMS Math 7(5):8847–8860

    Article  MathSciNet  Google Scholar 

  • Cottle RW, Pang JS, Stone RE (1992) The linear complementarity problem. Academic Press, San Diego

    MATH  Google Scholar 

  • Cvetković L (2006) \(H\)-matrix theory versus eigenvalue localization. Numer Algor 42:229–245

    Article  MATH  Google Scholar 

  • Cvetković L, Kostič V, Varga R (2004) A new Gersgorin-type eigenvalue inclusion area. ETNA 18:73–80

    MATH  Google Scholar 

  • Cvetković L, Dai PF, Doroslovaški K, Li YT (2013) Infinity norm bounds for the inverse of Nekrasov matrices. Appl Math Comput 219:5020–5024

    Article  MathSciNet  MATH  Google Scholar 

  • Cvetković DL, Cvetković L, Li CQ (2021) CKV-type matrices with applications. Linear Algebra Appl 608:158–184

    Article  MathSciNet  MATH  Google Scholar 

  • Dai PF (2011) Error bounds for linear complementarity problems of \(DB\)-matrices. Linear Algebra Appl 434:830–840

    Article  MathSciNet  MATH  Google Scholar 

  • Dai PF (2016) A note on diagonal dominance, Schur complements and some classes of \(H\)-matrices and \(P\)-matrices. Adv Comput Math 42:1–4

    Article  MathSciNet  MATH  Google Scholar 

  • Dai PF, Li YT, Lu CJ (2012) Error bounds for linear complementarity problems for \(SB\)-matrices. Numer Algor 61:121–139

    Article  MathSciNet  MATH  Google Scholar 

  • Dai PF, Lu CJ, Li YT (2013) New error bounds for the linear complementarity problem with an \(SB\)-matrix. Numer Algor 64(4):741–757

    Article  MathSciNet  MATH  Google Scholar 

  • Dai PF, Li CJ, Li YT, Zhang CY (2016) Error bounds for the linear complementarity problem of \(QN\)-matrices. Calcolo 53:647–657

    Article  MathSciNet  MATH  Google Scholar 

  • Gao YM, Wang XH (1992) Criteria for generalized diagonally dominant matrices and \(M\)-matrices. Linear Algebra Appl 169:257–268

    Article  MathSciNet  MATH  Google Scholar 

  • García-Esnaola M, Peña JM (2009) Error bounds for linear complementarity problems for \(B\)-matrices. Appl Math Lett 22:1071–1075

    Article  MathSciNet  MATH  Google Scholar 

  • García-Esnaola M, Peña JM (2010) A comparison of error bounds for linear complementarity problems of \(H\)-matrices. Linear Algebra Appl 433:956–964

    Article  MathSciNet  MATH  Google Scholar 

  • García-Esnaola M, Peña JM (2013) Error bounds for the linear complementarity problem with a \(\sum \)-SDD matrix. Linear Algebra Appl 438:1339–346

    Article  MathSciNet  MATH  Google Scholar 

  • García-Esnaola M, Peña JM (2014) Error bounds for linear complementarity problems of Nekrasov matrices. Numer Algor 67:655–667

    Article  MathSciNet  MATH  Google Scholar 

  • Huang TZ (2008) Estimation of \(\Vert A^{-1}\Vert _{\infty }\) and the smallest singular value. Comput Math Appl 55:1075–1080

    Article  MathSciNet  MATH  Google Scholar 

  • Kolotilina L (2019) On Dashnic–Zusmanovich (DZ) and Dashnic–Zusmanovich type (DZT) matrices and their inverses. J Math Sci 240(6):799–812

    Article  MathSciNet  MATH  Google Scholar 

  • Li W (2008) The infinity norm bound for the inverse of nonsingular diagonal dominant matrices. Appl Math Lett 21:258–263

    Article  MathSciNet  MATH  Google Scholar 

  • Li CQ, Li YT (2016) Note on error bounds for linear complementarity problems for \(B\)-matrices. Appl Math Lett 57:108–113

    Article  MathSciNet  MATH  Google Scholar 

  • Li CQ, Cvetkovi L, Wei YM, Zhao JX (2019) An infinity norm bound for the inverse of Dashnic–Zusmanovich type matrices with applications. Linear Algebra Appl 565:99–122

    Article  MathSciNet  MATH  Google Scholar 

  • Orera H, Peña JM (2019) Infinity norm bounds for the inverse of Nekrasov matrices using scaling matrices. Appl Math Comput 358:119–127

    Article  MathSciNet  MATH  Google Scholar 

  • Peña JM (2011) Diagonal dominance, Schur complements and some classes of \(H\)-matrices and \(P\)-matrices. Adv Comput Math 35:357–373

    Article  MathSciNet  MATH  Google Scholar 

  • Varah JM (1975) A lower bound for the smallest singular value of a matrix. Linear Algebra Appl 11:3–5

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and anonymous referees for their valuable comments and suggestions, which improve the original manuscript. This work is partly supported by Natural Science Foundations of Fujian Province of China (2020J01926) and Research Project of Department of Education of Fujian (JAT210429), Natural Science Foundations of Hainan Province of China (121MS001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinping Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Communicated by Jinyun Yuan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, PF., Li, J. & Zhao, S. Infinity norm bounds for the inverse for \(\textrm{GSDD}_1\) matrices using scaling matrices. Comp. Appl. Math. 42, 121 (2023). https://doi.org/10.1007/s40314-022-02165-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-02165-x

Keywords

Mathematics Subject Classification

Navigation