[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On group analysis, conservation laws and exact solutions of time-fractional Kudryashov–Sinelshchikov equation

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a systematic study for finding the symmetry group classification is performed for the time-fractional Kudryashov–Sinelshchikov equation, which describes the pressure waves in liquid with gas bubbles. Using Lie symmetries, the vector fields, and invariance properties of the underlying equation with various cases are presented and then similarity reductions are obtained. Furthermore, using the new conservation theorem, conservation laws are constructed for all possible cases. Finally, based on the invariant subspace method, a variety of exact solutions are derived using the obtained invariant subspaces, including the trigonometric, exponential, and polynomial type of solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel Kader AH, Abdel Latif MS, Nour HM (2019) Some exact solutions of the Kudryashov-Sinelshchikov equation using point transformations. Int J Appl Comput Math 5:27

    MathSciNet  MATH  Google Scholar 

  • Akram G, Sadaf M, Anum N (2017) Solutions of time-fractional Kudryashov-Sinelshchikov equation arising in the pressure waves in the liquid with gas bubbles. Opt Quant Electron 49:373

    Google Scholar 

  • Artale Harris P, Garra R (2013) Analytic solution of nonlinear fractional Burgers-type equation by invariant subspace method. Nonlinear Stud 20(4):471–481

    MathSciNet  MATH  Google Scholar 

  • Atangana A (2018) Fractional Operators with Constant and Variable Order with Application to Geo-hydrology. Academic Press, London

    MATH  Google Scholar 

  • Bagley RL, Torvik PJ (1984) On the appearance of the fractional derivative in the behavior of real materials. ASME J Appl Mech 51:294–298

    MATH  Google Scholar 

  • Bakkyaraj T (2020) Lie symmetry analysis of system of nonlinear fractional partial differential equations with Caputo fractional derivative. Eur Phys J Plus 135:126(17p)

  • Bakkyaraj T, Sahadevan R (2015) Group formalism of Lie transformations to time-fractional partial differential equations. Pramana-J Phys 85(5):849–860

    MATH  Google Scholar 

  • Baleanu D, Inc M, Yusuf A, Aliyu AI (2018) Lie symmetry analysis, exact solutions and conservation laws for the time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation. Commun Nonlinear Sci Numer Simulat 59:222–234

    MathSciNet  MATH  Google Scholar 

  • Bluman GW, Anco SC (2002) Symmetry and integration methods for differential equations. Springer, New York

    MATH  Google Scholar 

  • Buckwar E, Luchko Y (2012) Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J Math Anal Appl 227:81–97

    MathSciNet  MATH  Google Scholar 

  • Caputo M (2003) Diffusion with space memory modelled with distributed order space fractional differential equations. Ann Geophys 46:223–234

    Google Scholar 

  • Choudhary S, Daftardar-Gejji V (2017) Invariant subspace method: a tool for solving fractional partial differential equations. Fract Calc Appl Anal 20:477–493

    MathSciNet  MATH  Google Scholar 

  • Choudhary S, Prakash P, Daftardar-Gejji V (2019) Invariant subspaces and exact solutions for a system of fractional PDEs in higher dimensions. Comput Appl Math 38:126

    MathSciNet  MATH  Google Scholar 

  • Choudhary S, Daftardar-Gejji V (2019) Solving systems of multi-term fractional PDEs: Invariant subspace approach. Int J Model Simul Sci Comput 10(1):1941010 (25p)

  • Daftardar-Gejji V, Jafari H (2005) Adomian decomposition: a tool for solving a system of fractional differential equations. J Math Anal Appl 301:508–518

    MathSciNet  MATH  Google Scholar 

  • Dai Z, Peng Y, Mansy HA, Sandler RH, Royston TJ (2015) A model of lung parenchyma stress relaxation using fractional viscoelasticity. Med Eng Phys 37:752–758

    Google Scholar 

  • Diethelm K (2010) The analysis of fractional differential equations. Springer, Berlin

    MATH  Google Scholar 

  • El-Nabulsi RA (2011) The fractional Boltzmann transport equation. Comput Math Appl 62:1568–1575

    MathSciNet  MATH  Google Scholar 

  • Feng W (2019) On symmetry groups and conservation laws for space-time fractional inhomogenous nonlinear diffusion equation. Rep Math Phys 84:375–392

    MathSciNet  MATH  Google Scholar 

  • Galaktionov VA, Svirshchevskii SR (2007) Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics. Chapman and Hall/CRC, London

    MATH  Google Scholar 

  • Gandarias ML (2011) Weak self-adjoint differential equations. J Phys A Math Theor 44:262001(6pp)

  • Gazizov RK, Kasatkin AA, Lukashchuk SYu (2007) Continuous transformation groups of fractional-order differential equations. Vestnik USATU. 9:125–135 [In Russian.]

  • Gazizov RK, Kasatkin AA, Lukashchuk SYu (2009) Symmetry properties of fractional diffusion equations, Phys. Scr. T136:014016 (5p). (https://doi.org/10.1088/0031-8949/2009/T136/014016)

  • Gazizov RK, Kasatkin AA (2013) Construction of exact solutions for fractional order differential equations by invariant subspace method. Comput Math Appl 66:576–584

    MathSciNet  MATH  Google Scholar 

  • Gazizov RK, Ibragimov NH, Lukashchuk SY (2015) Nonlinear self-adjointness, conservation laws and exact solutions of time-fractional Kompaneets equations. Commun Nonlinear Sci Numer Simulat 23:153–163

    MathSciNet  MATH  Google Scholar 

  • Hashemi MS (2018) Invariant subspaces admitted by fractional differential equations with conformable derivatives. Chaos Solitions Fractals 107:161–169

    MathSciNet  MATH  Google Scholar 

  • Hashemi MS, Baleanu D (2016) On the time fractional generalized fisher equation: group similarities and analytical solutions. Commun Theor Phys 65(1):11

    MathSciNet  MATH  Google Scholar 

  • Hashemi MS, Baleanu D (2020) Lie Symmetry Analysis of Fractional Differential Equations. Chapman and Hall/CRC, New York

    MATH  Google Scholar 

  • Hejazi SR, Rashidi S (2019) Symmetries, csonservation laws and exact solutions of the time-fractional diffusivity equation via Riemann-Liouville and Caputo derivatives. Waves in Random and Complex Media 1–23. https://doi.org/10.1080/17455030.2019.1620973

  • Hilfer R (2000) Applications of Fractional Calculus in Physics. World Scientific, Singapore

    MATH  Google Scholar 

  • Hydon PE (2000) Symmetry methods for differential equations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Ibragimov NH (2011) Nonlinear self-adjointness and conservation laws. J Phys A Math Theor 44:432002(8pp)

  • Ibragimov NH (editor) (1994) CRC Handbook of Lie Group Analysis of Differential Equations, Vol.1: Symmetries, Exact Solutions and Conservation Laws, CRC Press, Boca Raton, Florida

  • Ibragimov NH, Torrisi M, Tracinà R (2010) Quasi self-adjoint nonlinear wave equations. J Phys A Math Theor 43:442001(8pp)

  • Ibragimov NH (2007) A new conservation theorem. J Math Anal Appl 333(1):311–328

    MathSciNet  MATH  Google Scholar 

  • Ibragimov NH, Avdonina ED (2013) Nonlinear self-adjointness, conservation laws, and the construction of solutions of partial differential equations using conservation laws. Russian Math Surv 68(5):889–921

    MATH  Google Scholar 

  • Ionescu C, Lopes A, Copot D, Machado JAT, Bates JHT (2017) The role of fractional calculus in modeling biological phenomena: A review. Commun Nonlinear Sci Numer Simul 51:141–159

    MathSciNet  MATH  Google Scholar 

  • Kilbas AA, Trujillo JJ, Srivastava HM (2006) Theory and applications of fractional differential equations. Elseiver, Amsterdam

    MATH  Google Scholar 

  • Kiryakova V (1994) Generalized Fractional Calculus and Applications, Pitman Research Notes in Mathematics, Harlow-John Wiley, vol 301. Longman, New York

    Google Scholar 

  • Kudryashov NA, Sinelshchikov DI (2010) Nonlinear evolution equations for describing waves in bubbly liquids with viscosity and heat transfer consideration. Appl Math Comput 217:414–421

    MathSciNet  MATH  Google Scholar 

  • Lakshmanan M, Kaliappan P (1983) Lie transformations, nonlinear evolution equations, and Painlevé forms. J Math Phys 24:795–806

    MathSciNet  MATH  Google Scholar 

  • Laskin N (2018) Fractional quantum mechanics. World Scientific, London

    MATH  Google Scholar 

  • Li Q, Chaolu T, Wang YH (2019) Lump-type solutions and lump solutions for the \((2+1)\)-dimensional generalized Bogoyavlensky-Konopelchenko equation. Comput Math Appl 77(8):2077–2085

    MathSciNet  MATH  Google Scholar 

  • Liu H (2018) Invariant subspace classification and exact solutions to the generalized nonlinear D-C equation. Appl Math Lett 83:164–168

    MathSciNet  MATH  Google Scholar 

  • Lukashchuk SY (2015) Conservation laws for time-fractional subdiffusion and diffusion-wave equations. Nonlinear Dyn 80:791–802

    MathSciNet  MATH  Google Scholar 

  • Ma WX, Mousa MM, Ali MR (2020) Application of a new hybrid method for solving singular fractional Lane-Emden-type equations in astrophysics. Mod Phys Lett B 34(3):1950229(10p)

  • Ma WX (2012) A refined invariant subspace method and applications to evolution equations. Sci China Math 55:1769–1778

    MathSciNet  MATH  Google Scholar 

  • Ma WX, Liu Y (2012) Invariant subspaces and exact solutions of a class of dispersive evolution equations. Commun Nonlinear Sci Numer Simulat 17:3795–3801

    MathSciNet  MATH  Google Scholar 

  • Ma WX, Zhang Y, Tang Y, Tu J (2012) Hirota bilinear equations with linear subspaces of solutions. Appl Math Comput 218:7174–7183

    MathSciNet  MATH  Google Scholar 

  • Ma WX, Manukure S, Wang H, Batwa S (2021) Lump solutions to a \((2+1)\)-dimensional fourth-order nonlinear PDE possessing a Hirota bilinear form. Mod Phys Lett B 35(9):2150160

    MathSciNet  Google Scholar 

  • Mainardi F (1997) Fractional calculus: some basic problems in continuum and statistical mechanics, fractals and fractional calculus in continuum mechanics. Springer-Verlag, New York, pp 291–348

    MATH  Google Scholar 

  • Manukure S, Zhou Y, Ma WX (2019) Lump solutions to a \((2 + 1)\)-dimensional extended KP equation. Comput Math Appl 77(8):2077–2085

    MathSciNet  MATH  Google Scholar 

  • Mathai AM, Haubold HJ (2008) Special Functions for Applied Scientists. Springer, New York

    MATH  Google Scholar 

  • Momani S, Odibat Z (2006) Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method. Appl Math Comput 177:488–494

    MathSciNet  MATH  Google Scholar 

  • Nass AM (2019) Lie symmetry analysis and exact solutions of fractional ordinary differential equations with neutral delay. Appl Math Comput 347:370–380

    MathSciNet  MATH  Google Scholar 

  • Odibat Z, Momani S (2008) A generalized differential transform method for linear partial differential equations of fractional order. Appl Math Lett 21(2):194–199

    MathSciNet  MATH  Google Scholar 

  • Ovsiannikov LV (1982) Group analysis of differential equations. Academic Press, New York

    MATH  Google Scholar 

  • Perdikaris P, Karniadakis GE (2014) Fractional-order viscoelasticity in one-dimensional blood flow models. Ann Biomed Eng 42:1012–1023

    Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Acadmic Press, New York

    MATH  Google Scholar 

  • Povstenko Y (2013) Fractional heat conduction in infinite one-dimensional composite medium. J Therm Stresses 36:351–363

    Google Scholar 

  • Prakash P (2020) Invariant subspaces and exact solutions for some types of scalar and coupled time-space fractional diffusion equations. Pramana-J Phys 94:103(18p)

  • Prakash P (2019) New exact solutions of generalized convection-reaction-diffusion equation. Eur Phys J Plus 134:261. https://doi.org/10.1140/epjp/i2019-12657-3

    Article  Google Scholar 

  • Prakash P, Sahadevan R (2017) Lie symmetry analysis and exact solution of certain fractional ordinary differential equations. Nonlinear Dyn 89:305–319

    MathSciNet  MATH  Google Scholar 

  • Prakash P, Choudhary S, Daftardar-Gejji V (2020) Exact solutions of generalized nonlinear time-fractional reaction-diffusion equations with time delay. Eur Phys J Plus 135:490(24p)

  • Rui W (2018) Idea of invariant subspace combined with elementary integral method for investigating exact solutions of time-fractional NPDEs. Appl Math Comput 339:158–171

    MathSciNet  MATH  Google Scholar 

  • Ryabov PN (2010) Exact solutions of the Kudryashov-Sinelshchikov equation. Appl Math Comput 217:3585–3590

    MathSciNet  MATH  Google Scholar 

  • Sahadevan R, Bakkyaraj T (2012) Invariant analysis of time fractional generalized Burgers and Korteweg-de Vries equations. J Math Anal Appl 393(2):341–347

    MathSciNet  MATH  Google Scholar 

  • Sahadevan R, Bakkyaraj T (2015) Invariant subspace method and exact solutions of certain nonlinear time fractional partial differential equations. Fract Calc Appl Anal 18:146–162

    MathSciNet  MATH  Google Scholar 

  • Sahadevan R, Prakash P (2016) Exact solution of certain time fractional nonlinear partial differential equations. Nonlinear Dyn 85:659–673

    MathSciNet  MATH  Google Scholar 

  • Sahadevan R, Prakash P (2017) On Lie symmetry analysis and invariant subspace methods of coupled time fractional partial differential equations. Chaos Solitons Fractals 104:107–120

    MathSciNet  MATH  Google Scholar 

  • Sahadevan R, Prakash P (2017) Exact solutions and maximal dimension of invariant subspaces of time fractional coupled nonlinear partial differential equations. Commun Nonlinear Sci Numer Simulat 42:158–177

    MathSciNet  MATH  Google Scholar 

  • Sahadevan R, Prakash P (2019) Lie symmetry analysis and conservation laws of certain time fractional partial differential equations. Int J Dyn Syst Differ Equ 9(1):44–64

    MathSciNet  MATH  Google Scholar 

  • Sethukumarasamy K, Vijayaraju P, Prakash P (2021) On Lie symmetry analysis of certain coupled fractional ordinary differential equations. J Nonlinear Math Phys 28(2):219–241

    Google Scholar 

  • Silva MF, Machado JAT, Lopes AM (2004) Fractional order control of a hexapod robot. Nonlinear Dyn 38:417–433

    MATH  Google Scholar 

  • Singla K, Gupta RK (2017) Space-time fractional nonlinear partial differential equations: symmetry analysis and conservation laws. Nonlinear Dyn 89:321–331

    MathSciNet  MATH  Google Scholar 

  • Sun HG, Zhang Y, Baleanu D, Chen W, Chen YQ (2018) A new collection of real world applications of fractional calculus in science and engineering. Commun Nonlinear Sci Numer Simulat 64:213–231

    MATH  Google Scholar 

  • Tarasov VE (2011) Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Nonlinear Physical Science. Springer, Heidelberg

    Google Scholar 

  • Tarasov VE (2013) Review of some promising fractional physical models. Int J Modern Phys B 27(9):1330005

    MathSciNet  MATH  Google Scholar 

  • Tarasov VE (2018) Generalized memory: fractional calculus approach. Fractal Fract 2:23. https://doi.org/10.3390/fractalfract2040023

    Article  Google Scholar 

  • Tarasov VE (2020) Cagan model of inflation with power-law memory effects. Comput Appl Math 39:207

    MathSciNet  MATH  Google Scholar 

  • Tarasov VE, Aifantis EC (2015) Non-standard extensions of gradient elasticity: fractional non-locality, memory and fractality. Commun Nonlinear Sci Numer Simul 22:197–227

    MathSciNet  MATH  Google Scholar 

  • Tarasov VE, Trujillo JJ (2013) Fractional power-law spatial dispersion in electrodynamics. Ann Phys 334:1–23

    MathSciNet  Google Scholar 

  • Tua JM, Tiana SF, Xua MJ, Zhang TT (2016) On Lie symmetries, optimal systems and explicit solutions to the Kudryashov-Sinelshchikov equation. Appl Math Comput 275:345–352

    MathSciNet  Google Scholar 

  • Yang JY, Ma WX, Qin Z (2018) Lump and lump-soliton solutions to the \((2+1)\)-dimensional Ito equation. Anal Math Phys 8:427–436

    MathSciNet  MATH  Google Scholar 

  • Ye Y, Ma WX, Shen S, Zhang D (2014) A class of third-order nonlinear evolution equations admitting invariant subspaces and associated reductions. J Nonlinear Math Phys 21:132–148

    MathSciNet  MATH  Google Scholar 

  • Zhang HQ, Ma WX (2017) Lump solutions to the \((2+1)\)-dimensional Sawada-Kotera equation. Nonlinear Dyn 87:2305–2310

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the editor and anonymous referees for their helpful comments and suggestions for the significant improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Prakash.

Additional information

Communicated by Vasily E. Tarasov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, P. On group analysis, conservation laws and exact solutions of time-fractional Kudryashov–Sinelshchikov equation. Comp. Appl. Math. 40, 162 (2021). https://doi.org/10.1007/s40314-021-01550-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01550-2

Keywords

Mathematics Subject Classification

Navigation