[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

A Comprehensive Review on the Utilization of Biomaterials for Bio-Based Hydrogel in Therapeutic Applications

  • Review
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

A bio-based hydrogel is a complex compound that consists of natural biomaterials and is widely applied for various therapeutic purposes. The modification from traditional biomaterials to reformulated bio-based hydrogels has gained a place at biomedical field due to the growth of therapeutic benefits such as drug delivery, tissue engineering, and regenerative medicine. Moreover, the increasing global demand for bio-based hydrogels has resulted in a worldwide shortage of mass formulations and has raised environmental awareness. By using natural biomaterials instead of synthetic ones, these hydrogels minimize their negative effects on the environment while simultaneously maximizing the successful execution of the product. However, the mechanisms governing degradation and bioactivity in bio-based hydrogels, which dictate drug release profiles, hydrogel stability, and therapeutic effectiveness, are not yet comprehensively understood. Therefore, by analyzing recent progress and ongoing challenges, this review will reveal how advanced bio-based hydrogels are quietly transforming the future of healthcare and offering novel solutions to pressing health problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3 

Similar content being viewed by others

Data Availability

The data that support the findings of this study are not available as no datasets were analyzed during the current study.

References

  1. A. Awasthi, K.K. Saxena, R.K. Dwivedi, An investigation on classification and characterization of bio materials and additive manufacturing techniques for bioimplants. Mater. Today Proc. 44, 2061–2068 (2021)

    Article  CAS  Google Scholar 

  2. S. Varghese et al., Biomaterials in medical applications. Curr. Mater. Sci. 17(3), 212–239 (2024)

    Article  Google Scholar 

  3. K.M. Agarwal et al., Comprehensive study related to advancement in biomaterials for medical applications. Sens. Int. 1, 100055 (2020)

    Article  Google Scholar 

  4. A.D. Štiglic, Preparation of three dimensional structures of polysaccharide derivatives for application in regenerative medicine. (Univerza v Mariboru (Slovenia), 2022)

  5. S.J. Buwalda, Bio-based composite hydrogels for biomedical applications. Multifunct. Mater. 3(2), 022001 (2020)

    Article  CAS  Google Scholar 

  6. M. Zhu et al., Research progress in bio-based self-healing materials. Eur. Polymer J. 129, 109651 (2020)

    Article  CAS  Google Scholar 

  7. C. Dou et al., Bio-based poly (γ-glutamic acid)-gelatin double-network hydrogel with high strength for wound healing. Int. J. Biol. Macromol. 202, 438–452 (2022)

    Article  CAS  PubMed  Google Scholar 

  8. M.D. Markovic et al., Biobased thermo/pH sensitive poly (N-isopropylacrylamide-co-crotonic acid) hydrogels for targeted drug delivery. Micropor. Mesopor. Mater. 335, 111817 (2022)

    Article  CAS  Google Scholar 

  9. M. Prasathkumar, S. Sadhasivam, Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing—Know-how. Int. J. Biol. Macromol. 186, 656–685 (2021)

    Article  CAS  PubMed  Google Scholar 

  10. S. Homaeigohar, A.R. Boccaccini, Antibacterial biohybrid nanofibers for wound dressings. Acta Biomater. 107, 25–49 (2020)

    Article  CAS  PubMed  Google Scholar 

  11. V. Hegde et al., Alginate based polymeric systems for drug delivery, antibacterial/microbial, and wound dressing applications. Mater. Today Commun. 33, 104813 (2022)

    Article  CAS  Google Scholar 

  12. H. Nosrati et al., Delivery of antibacterial agents for wound healing applications using polysaccharide-based scaffolds. J. Drug Deliv. Sci. Technol. 84, 104516 (2023)

    Article  CAS  Google Scholar 

  13. S.M. Marques, L. Kumar, Improving the sustainability of biobased products using nanotechnology, in Sustainable nanotechnology: strategies, products, and applications. (Wiley, Hoboken, 2022), pp.51–70

    Chapter  Google Scholar 

  14. R.K. Manivannan et al., A comprehensive review on natural macromolecular biopolymers for biomedical applications: Recent advancements, current challenges, and future outlooks. Carbohydr. Polym. Tech. Appl. 8, 100536 (2024)

    Google Scholar 

  15. A. Morales et al., Synthesis of advanced biobased green materials from renewable biopolymers. Curr. Opin. Green Sustain. Chem. 29, 100436 (2021)

    Article  CAS  Google Scholar 

  16. A.A.H. AL-dabbagh, J.A.S. Salman, H.A. Ajah, Characterization of purified dextran from Lactobacillus fermentum

  17. D.E. EL-Ghwas, Bacterial Cellulose, Fermentative Production and its Pharmaceutical Application (2022)

  18. A. Bharadwaj, An overview on biomaterials and its applications in medical science. in IOP conference series: materials science and engineering. (IOP Publishing, 2021)

  19. H. Seddiqi et al., Cellulose and its derivatives: towards biomedical applications. Cellulose 28(4), 1893–1931 (2021)

    Article  CAS  Google Scholar 

  20. B. Zhao et al., Antibacterial activity of bifunctional bacterial cellulose composite grafted with glucose oxidase and l-arginine. Cellulose 30(14), 8973–8984 (2023)

    Article  CAS  Google Scholar 

  21. X. Yu et al., Double network microcrystalline cellulose hydrogels with high mechanical strength and biocompatibility for cartilage tissue engineering scaffold. Int. J. Biol. Macromol. 238, 124113 (2023)

    Article  CAS  PubMed  Google Scholar 

  22. N.H. Syed, H. Rajaratinam, A.A. Nurul, Chitosan from marine biowaste: current and future applications in tissue engineering, in Sustainable material for biomedical engineering application. (Springer, New York, 2023), pp.87–106

    Chapter  Google Scholar 

  23. V. Kumar et al., Synthesis and characterization of chitosan nanofibers for wound healing and drug delivery application. J. Drug Deliv. Sci. Tech. 87, 104858 (2023)

    Article  CAS  Google Scholar 

  24. S. Baruah, A brief overview on potential biomedical and pharmaceutical application of naturally synthesized chitosan

  25. D. Pacheco et al., Brown seaweed polysaccharides: a roadmap as biomolecules, in Seaweed biotechnology. (Apple Academic Press, 2022), pp. 97–152

  26. D.R. Sahoo, T. Biswal, Alginate and its application to tissue engineering. SN Appl. Sci. 3(1), 30 (2021)

    Article  CAS  Google Scholar 

  27. M. Moscovici, C. Balas, Bacterial polysaccharides versatile medical uses, in Polysaccharides of microbial origin: biomedical applications. (Springer, New York, 2022), pp.859–891

    Chapter  Google Scholar 

  28. Y. Wang et al., Production and characterization of insoluble α-1, 3-linked glucan and soluble α-1, 6-linked dextran from Leuconostoc pseudomesenteroides G29. Chin. J. Chem. Eng. 39, 211–218 (2021)

    Article  CAS  Google Scholar 

  29. R. Ciriminna, A. Scurria, M. Pagliaro, Microbial production of hyaluronic acid: the case of an emergent technology in the bioeconomy. Biofuels Bioprod. Biorefin. 15(6), 1604–1610 (2021)

    Article  CAS  Google Scholar 

  30. P. Shukla et al., Tapping on the potential of hyaluronic acid: from production to application. Appl. Biochem. Biotechnol. 195(11), 7132–7157 (2023)

    Article  CAS  PubMed  Google Scholar 

  31. K.N.B. Azimi, Evaluation of the function of connective tissue fibers in the human body. Arch. Int. J. Multidiscip. Trends 2, 15–19 (2020)

    Google Scholar 

  32. F. Musayeva, S. Özcan, M.S. Kaynak, A review on collagen as a food supplement. J. Pharm. Tech. 3(1), 7–29 (2022)

    Google Scholar 

  33. S. Sharma et al., Collagen-based formulations for wound healing: a literature review. Life Sci. 290, 120096 (2022)

    Article  CAS  PubMed  Google Scholar 

  34. M. Dille, I. Haug, K. Draget, Gelatin and collagen, in Handbook of hydrocolloids. (Elsevier, Amsterdam, 2021), pp.1073–1097

    Chapter  Google Scholar 

  35. H. Singh et al., Dual cross-linked gellan gum/gelatin-based multifunctional nanocomposite hydrogel scaffold for full-thickness wound healing. Int. J. Biol. Macromol. 251, 126349 (2023)

    Article  CAS  PubMed  Google Scholar 

  36. Y. Wang et al., A janus gelatin sponge with a procoagulant nanoparticle-embedded surface for coagulopathic hemostasis. ACS Appl. Mater. Interfaces 16(1), 353–363 (2023)

    Article  PubMed  Google Scholar 

  37. K.J. Kearney, R.A. Ariëns, F.L. Macrae, The role of fibrin (ogen) in wound healing and infection control, in Seminars in Thrombosis and Hemostasis. (Thieme Medical Publishers, Inc, New York, 2022)

    Google Scholar 

  38. C.P. Jara et al., Novel fibrin-fibronectin matrix accelerates mice skin wound healing. Bioact. Mater. 5(4), 949–962 (2020)

    PubMed  PubMed Central  Google Scholar 

  39. J.M. Davidson, Elastin: structure and biology, in Connective tissue disease. (CRC Press, Boca Raton, 2021), pp.29–54

    Chapter  Google Scholar 

  40. M.M. Kucherenko et al., Elastin stabilization prevents impaired biomechanics in human pulmonary arteries and pulmonary hypertension in rats with left heart disease. Nat. Commun. 14(1), 4416 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. L. Baumann et al., Clinical relevance of elastin in the structure and function of skin, in Aesthetic surgery journal open forum. (Oxford University Press US, Oxford, 2021)

    Google Scholar 

  42. K. Wang et al., Review on fabrication and application of regenerated Bombyx mori silk fibroin materials. AUTEX Res. J. 23(2), 164–183 (2023)

    Article  CAS  Google Scholar 

  43. M. Kostag, K. Jedvert, O.A. El Seoud, Engineering of sustainable biomaterial composites from cellulose and silk fibroin: fundamentals and applications. Int. J. Biol. Macromol. 167, 687–718 (2021)

    Article  CAS  PubMed  Google Scholar 

  44. R. Ziadlou et al., Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs. Mater. Sci. Eng. C 120, 111701 (2021)

    Article  CAS  Google Scholar 

  45. M. Li et al., Novel insights into whey protein differences between donkey and bovine milk. Food Chem. 365, 130397 (2021)

    Article  CAS  PubMed  Google Scholar 

  46. R. Mehra et al., Whey proteins processing and emergent derivatives: An insight perspective from constituents, bioactivities, functionalities to therapeutic applications. J. Funct. Foods 87, 104760 (2021)

    Article  CAS  Google Scholar 

  47. C. Zhao et al., Untargeted metabolomic reveals the changes in muscle metabolites of mice during exercise recovery and the mechanisms of whey protein and whey protein hydrolysate in promoting muscle repair. Food Res. Int. 184, 114261 (2024)

    Article  CAS  PubMed  Google Scholar 

  48. S. Tahmouzi et al., Application of guar (Cyamopsis tetragonoloba L.) gum in food technologies: a review of properties and mechanisms of action. Food Sci. Nutr. 11(9), 4869–4897 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. N. Wang et al., Effects of guar gum on blood lipid levels: a systematic review and meta-analysis on randomized clinical trials. J. Funct. Foods 85, 104605 (2021)

    Article  CAS  Google Scholar 

  50. M.J. Dev et al., Advances in fermentative production, purification, characterization and applications of gellan gum. Biores. Technol. 359, 127498 (2022)

    Article  CAS  Google Scholar 

  51. F.S. Palumbo et al., Gellan gum-based delivery systems of therapeutic agents and cells. Carbohyd. Polym. 229, 115430 (2020)

    Article  CAS  Google Scholar 

  52. Wafari, U. and K. Ta’awu, Biotechnological application and the importance of plant gum exudates acacia senegal and acacia seyal to the food industry. 2021.

  53. J. Guan, S. Mao, Pharmaceutical Applications of Gum Arabic, in Natural Polymers for Pharmaceutical Applications. (Apple Academic Press, 2019), pp. 21–48

  54. A.C.R. da Silva et al., Potential utilization of a lambda carrageenan polysaccharide, derived from a cultivated, clonal strain of the red seaweed Chondrus crispus (Irish moss) against toxic actions of venom of Bothrops jararaca and B. jararacussu snakes. J. Appl. Phycol. 32, 4309–4320 (2020)

    Article  Google Scholar 

  55. O. Olatunji, O. Olatunji, Carrageenans. Aquatic biopolymers: understanding their industrial significance and environmental implications (2020), pp. 121–144

  56. A. Frediansyah, The antiviral activity of iota-, kappa-, and lambda-carrageenan against COVID-19: a critical review. Clin. Epidemiol. Glob. Health 12, 100826 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. M. Nejadmansouri et al., Production of xanthan gum using immobilized Xanthomonas campestris cells: effects of support type. Biochem. Eng. J. 157, 107554 (2020)

    Article  CAS  Google Scholar 

  58. T. Virmani et al., Xanthan gum-based drug delivery systems for respiratory diseases, in Natural polymeric materials based drug delivery systems in lung diseases. (Springer, New York, 2023), pp.279–295

    Chapter  Google Scholar 

  59. C. Zhang et al., Process and applications of alginate oligosaccharides with emphasis on health beneficial perspectives. Crit. Rev. Food Sci. Nutr. 63(3), 303–329 (2023)

    Article  CAS  PubMed  Google Scholar 

  60. L. Li et al., Recent advances in the production, properties and applications of alginate oligosaccharides-a mini review. World J. Microbiol. Biotechnol. 39(8), 207 (2023)

    Article  CAS  PubMed  Google Scholar 

  61. M.A. Khalil et al., Exploring the therapeutic potentials of exopolysaccharides derived from lactic acid bacteria and bifidobacteria: antioxidant, antitumor, and periodontal regeneration. Front. Microbiol. 13, 803688 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  62. F. Salimi, P. Farrokh, Recent advances in the biological activities of microbial exopolysaccharides. World J. Microbiol. Biotechnol. 39(8), 213 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. L.K. Hakim et al., Biocompatible and biomaterials application in drug delivery system in oral cavity. Evid. Based Complementary Altern. Med. 2021(1), 9011226 (2021)

    Google Scholar 

  64. H. Li et al., Recent progress and clinical applications of advanced biomaterials in cosmetic surgery. Regen. Biomater. 10, rbad005 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Y. Li et al., Synthesis of novel hydrogels with unique mechanical properties (Frontiers Media SA, Lausanne, 2020), p.595392

    Google Scholar 

  66. X. Lin et al., Progress in the mechanical enhancement of hydrogels: Fabrication strategies and underlying mechanisms. J. Polym. Sci. 60(17), 2525–2542 (2022)

    Article  CAS  Google Scholar 

  67. H. Mndlovu et al., A review of bio material degradation assessment approaches employed in the biomedical field. NPJ Mater. Degrad. 8(1), 66 (2024)

    Article  CAS  Google Scholar 

  68. D. Umuhoza et al., Strategies for tuning the biodegradation of silk fibroin-based materials for tissue engineering applications. ACS Biomater. Sci. Eng. 6(3), 1290–1310 (2020)

    Article  CAS  PubMed  Google Scholar 

  69. K. Joyce et al., Bioactive potential of natural biomaterials: Identification, retention and assessment of biological properties. Signal Transduct. Target. Ther. 6(1), 122 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. N. Goonoo, Tunable biomaterials for myocardial tissue regeneration: promising new strategies for advanced biointerface control and improved therapeutic outcomes. Biomater. Sci. 10(7), 1626–1646 (2022)

    Article  CAS  PubMed  Google Scholar 

  71. I. Pepelanova, Tunable hydrogels: introduction to the world of smart materials for biomedical applications, in Tunable Hydrogels. (Springer, New York, 2021), pp.1–35

    Google Scholar 

  72. M.J. Austin, A.M. Rosales, Tunable biomaterials from synthetic, sequence-controlled polymers. Biomater. Sci. 7(2), 490–505 (2019)

    Article  CAS  PubMed  Google Scholar 

  73. M. Chelu, A.M. Musuc, Biomaterials-based hydrogels for therapeutic applications (2024)

  74. R. Hama et al., Recent developments in biopolymer-based hydrogels for tissue engineering applications. Biomolecules 13(2), 280 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. N.H. Thang, T.B. Chien, D.X. Cuong, Polymer-based hydrogels applied in drug delivery: an overview. Gels 9(7), 523 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. M. Chelu, A.M. Musuc, Advanced biomedical applications of multifunctional natural and synthetic biomaterials. Processes 11(9), 2696 (2023)

    Article  CAS  Google Scholar 

  77. M. Mahdian et al., Dual stimuli-responsive gelatin-based hydrogel for pH and temperature-sensitive delivery of curcumin anticancer drug. J. Drug Deliv. Sci. Tech. 84, 104537 (2023)

    Article  CAS  Google Scholar 

  78. R. Salehi et al., In situ forming thermosensitive vaginal hydrogels containing curcumin-loaded polymeric nanoparticles with their sustained release: rheological measurements and cytotoxicity effect on cervix cancer cell. Iran. Polym. J. 31(12), 1495–1510 (2022)

    Article  CAS  Google Scholar 

  79. Z. Deng, Z. Yang, J. Peng, Role of bioactive peptides derived from food proteins in programmed cell death to treat inflammatory diseases and cancer. Crit. Rev. Food Sci. Nutr. 63(19), 3664–3682 (2023)

    Article  CAS  PubMed  Google Scholar 

  80. J. Xu et al., Advances in 3D peptide hydrogel models in cancer research. NPJ Sci. Food 5(1), 14 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  81. B. Liu, K. Chen, Advances in hydrogel-based drug delivery systems. Gels 10(4), 262 (2024)

    Article  PubMed  PubMed Central  Google Scholar 

  82. H. Bai et al., Regulation of inflammatory microenvironment using a self-healing hydrogel loaded with BM-MSCs for advanced wound healing in rat diabetic foot ulcers. J. Tiss. Eng. 11, 2041731420947242 (2020)

    Article  Google Scholar 

  83. K. Chen et al., Injectable melatonin-loaded carboxymethyl chitosan (CMCS)-based hydrogel accelerates wound healing by reducing inflammation and promoting angiogenesis and collagen deposition. J. Mater. Sci. Technol. 63, 236–245 (2021)

    Article  CAS  Google Scholar 

  84. K. Wang et al., Recent advances in chitosan-based metal nanocomposites for wound healing applications. Adv. Mater. Sci. Eng. 2020(1), 3827912 (2020)

    Article  Google Scholar 

  85. V.O. Fasiku et al., Chitosan-based hydrogel for the dual delivery of antimicrobial agents against bacterial methicillin-resistant Staphylococcus aureus biofilm-infected wounds. ACS Omega 6(34), 21994–22010 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. S.-M. Tatarusanu et al., New smart bioactive and biomimetic chitosan-based hydrogels for wounds care management. Pharmaceutics 15(3), 975 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Y. Zhao et al., Recent advances of natural-polymer-based hydrogels for wound antibacterial therapeutics. Polymers 15(15), 3305 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. S. Wang et al., Hydrogels for treatment of different degrees of osteoarthritis. Front. Bioeng. Biotechnol. 10, 858656 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  89. Y. Yang et al., Ultra-durable cell-free bioactive hydrogel with fast shape memory and on-demand drug release for cartilage regeneration. Nat. Commun. 14(1), 7771 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. S. Bordbar et al., Cartilage tissue engineering using decellularized biomatrix hydrogel containing TGF-β-loaded alginate microspheres in mechanically loaded bioreactor. Sci. Rep. 14(1), 11991 (2024)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. X. Li et al., Hydrogel systems for targeted cancer therapy. Front. Bioeng. Biotechnol. 11, 1140436 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  92. Q.-Q. Wang et al., Promising clinical applications of hydrogels associated with precise cancer treatment: a review. Technol. Cancer Res. Treat. 22, 15330338221150322 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  93. R. Solanki, D. Bhatia, Stimulus-responsive hydrogels for targeted cancer therapy. Gels 10(7), 440 (2024)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Y. Peng et al., Engineered bio-based hydrogels for cancer immunotherapy. Adv. Mater. 36, 2313188 (2024)

    Article  CAS  Google Scholar 

  95. Z.S. Nishat et al., Hydrogel nanoarchitectonics: an evolving paradigm for ultrasensitive biosensing. Small 18(26), 2107571 (2022)

    Article  CAS  Google Scholar 

  96. M. Aranda Palomer et al., Continuous remote monitoring of prostate cancer metabolites through an implanted biosensor. 28th and 29th July, 2022

  97. G.A. Politrón-Zepeda, G. Fletes-Vargas, R. Rodríguez-Rodríguez, Injectable hydrogels for nervous tissue repair—a brief review. Gels 10(3), 190 (2024)

    Article  PubMed  PubMed Central  Google Scholar 

  98. S. Han et al., Recent progresses in neural tissue engineering using topographic scaffolds. Am. J. Stem Cells 13(1), 1 (2024)

    Article  PubMed  PubMed Central  Google Scholar 

  99. T. Chen et al., Loading neural stem cells on hydrogel scaffold improves cell retention rate and promotes functional recovery in traumatic brain injury. Mater. Today Bio 19, 100606 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. X. Li et al., Biological characteristics of tissue engineered-nerve grafts enhancing peripheral nerve regeneration. Stem Cell Res. Ther. 15(1), 215 (2024)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. B. Sheokand et al., Natural polymers used in the dressing materials for wound healing: past, present and future. J. Polym. Sci. 61(14), 1389–1414 (2023)

    Article  CAS  Google Scholar 

  102. H. Zhang et al., Developing natural polymers for skin wound healing. Bioact. Mater. 33, 355–376 (2024)

    CAS  PubMed  Google Scholar 

  103. Arunim et al., Natural biopolymer-based hydrogels: an advanced material for diabetic wound healing. Diabetol. Int. (2024). https://doi.org/10.1007/s13340-024-00737-2

    Article  PubMed  Google Scholar 

  104. K. Valachová, M.A. El Meligy, L. Šoltés, Hyaluronic acid and chitosan-based electrospun wound dressings: problems and solutions. Int. J. Biol. Macromol. 206, 74–91 (2022)

    Article  PubMed  Google Scholar 

  105. N. Khandan-Nasab et al., Design and characterization of adipose-derived mesenchymal stem cell loaded alginate/pullulan/hyaluronic acid hydrogel scaffold for wound healing applications. Int. J. Biol. Macromol. 241, 124556 (2023)

    Article  CAS  PubMed  Google Scholar 

  106. R.M. Hassan, Methods of polysaccharides crosslinking: future-promising crosslinking techniques of alginate hydrogels for 3D printing in biomedical applications. 3D printable Gel-inks for Tissue Engineering: Chemistry, Processing, and Applications (2021), pp. 355–382

  107. S.K. Moinuddin et al., A review on micro beads: formulation, technological aspects, and extraction. GSC Biol. Pharm. Sci. 26(2), 059–066 (2024)

    Article  CAS  Google Scholar 

  108. S. Das, Pectin based multi-particulate carriers for colon-specific delivery of therapeutic agents. Int. J. Pharm. 605, 120814 (2021)

    Article  CAS  PubMed  Google Scholar 

  109. K.M. Sahu, S. Patra, S.K. Swain, Host-guest drug delivery by β-cyclodextrin assisted polysaccharide vehicles: a review. Int. J. Biol. Macromol. 240, 124338 (2023)

    Article  CAS  PubMed  Google Scholar 

  110. V.K. Nandagiri et al., Biomaterials of natural origin in regenerative medicine, in Polymeric biomaterials. (CRC Press, Boca Raton, 2020), pp.281–326

    Google Scholar 

  111. N. Kohli et al., Pro-angiogenic and osteogenic composite scaffolds of fibrin, alginate and calcium phosphate for bone tissue engineering. J. Tiss. Eng. 12, 20417314211005610 (2021)

    Article  Google Scholar 

  112. L. Edgar et al., Regenerative medicine, organ bioengineering and transplantation. J. Br. Surg. 107(7), 793–800 (2020)

    Article  CAS  Google Scholar 

  113. G.H. Ángeles, K. Nešporová, Hyaluronan and its derivatives for ophthalmology: recent advances and future perspectives. Carbohyd. Polym. 259, 117697 (2021)

    Article  Google Scholar 

  114. M. Mofidfar et al., Drug delivery to the anterior segment of the eye: a review of current and future treatment strategies. Int. J. Pharm. 607, 120924 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. A.K. Sri et al., Nano-hydroxyapatite/collagen composite as scaffold material for bone regeneration. Biomed. Mater. 18(3), 032002 (2023)

    Article  Google Scholar 

  116. S.-K. Kim et al., Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration. Beilstein J. Nanotechnol. 13(1), 1051–1067 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Y. Tian et al., Chitosan-based biomaterial scaffolds for the repair of infected bone defects. Front. Bioeng. Biotechnol. 10, 899760 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  118. L. Guo et al., The role of natural polymers in bone tissue engineering. J. Control. Release 338, 571–582 (2021)

    Article  CAS  PubMed  Google Scholar 

  119. P. Chandika et al., Recent advances in biological macromolecule based tissue-engineered composite scaffolds for cardiac tissue regeneration applications. Int. J. Biol. Macromol. 164, 2329–2357 (2020)

    Article  CAS  PubMed  Google Scholar 

  120. P. Pushp, M.K. Gupta, Cardiac tissue engineering: A role for natural biomaterials. Bioactive natural products for pharmaceutical applications (2021), pp. 617–641

  121. S. Saghebasl et al., Biodegradable functional macromolecules as promising scaffolds for cardiac tissue engineering. Polym. Adv. Technol. 33(7), 2044–2068 (2022)

    Article  CAS  Google Scholar 

  122. M. Ghovvati et al., Recent advances in designing electroconductive biomaterials for cardiac tissue engineering. Adv. Healthcare Mater. 11(13), 2200055 (2022)

    Article  CAS  Google Scholar 

  123. B. Jadach, Z. Mielcarek, T. Osmałek, Use of collagen in cosmetic products. Curr. Issues Mol. Biol. 46(3), 2043–2070 (2024)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. J. Li et al., The development of hyaluronic acids used for skin tissue regeneration. Curr. Drug Deliv. 18(7), 836–846 (2021)

    Article  CAS  PubMed  Google Scholar 

  125. M. El Soury et al., Chitosan conduits enriched with fibrin-collagen hydrogel with or without adipose-derived mesenchymal stem cells for the repair of 15-mm-long sciatic nerve defect. Neural Regen. Res. 18(6), 1378–1385 (2023)

    Article  PubMed  Google Scholar 

  126. X.-Y. Liu et al., Integrated printed BDNF/collagen/chitosan scaffolds with low temperature extrusion 3D printer accelerated neural regeneration after spinal cord injury. Regen. Biomater. 8(6), rbab047 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  127. Z. Yang et al., Targeted delivery of hydrogels in human gastrointestinal tract: a review. Food Hydrocoll. 134, 108013 (2023)

    Article  CAS  Google Scholar 

  128. H. Azehaf et al., Microbiota-sensitive drug delivery systems based on natural polysaccharides for colon targeting. Drug Discov. Today 28(7), 103606 (2023)

    Article  CAS  PubMed  Google Scholar 

  129. S. Li et al., Application of chitosan/alginate nanoparticle in oral drug delivery systems: prospects and challenges. Drug Deliv. 29(1), 1142–1149 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. M.A.J. Shaikh et al., Sodium alginate based drug delivery in management of breast cancer. Carbohyd. Polym. 292, 119689 (2022)

    Article  CAS  Google Scholar 

  131. A. Erfani, A.E. Diaz, P.S. Doyle, Hydrogel-enabled, local administration and combinatorial delivery of immunotherapies for cancer treatment. Mater. Today 65, 227–243 (2023)

    Article  CAS  Google Scholar 

  132. M. Saeedi et al., Customizing nano-chitosan for sustainable drug delivery. J. Control. Release 350, 175–192 (2022)

    Article  CAS  PubMed  Google Scholar 

  133. R. Kundu et al., Cellulose hydrogels: green and sustainable soft biomaterials. Curr. Res. Green Sustain. Chem. 5, 100252 (2022)

    Article  CAS  Google Scholar 

  134. M. Gericke et al., The European polysaccharide network of excellence (EPNOE) research roadmap 2040: Advanced strategies for exploiting the vast potential of polysaccharides as renewable bioresources. Carbohyd. Polym. 326, 121633 (2024)

    Article  CAS  Google Scholar 

  135. T. Biswal, S.K. BadJena, D. Pradhan, Sustainable biomaterials and their applications: a short review. Mater. Today Proc. 30, 274–282 (2020)

    Article  CAS  Google Scholar 

  136. S.A. Edrisi et al., Carbon sequestration and harnessing biomaterials from terrestrial plantations for mitigating climate change impacts, in Biomass, biofuels, biochemicals. (Elsevier, Amsterdam, 2022), pp.299–313

    Chapter  Google Scholar 

  137. K. Ghosal, S. Ghosh, Biodegradable polymers from lignocellulosic biomass and synthetic plastic waste: an emerging alternative for biomedical applications. Mater. Sci. Eng. R. Rep. 156, 100761 (2023)

    Article  Google Scholar 

  138. B. Koul, M. Yakoob, M.P. Shah, Agricultural waste management strategies for environmental sustainability. Environ. Res. 206, 112285 (2022)

    Article  CAS  PubMed  Google Scholar 

  139. M.M. Ansari et al., Nanocellulose derived from agricultural biowaste by-products–sustainable synthesis, biocompatibility, biomedical applications, and future perspectives: a review. Carbohydr. Polym. Technol. Appl. 8, 100529 (2024)

    CAS  Google Scholar 

  140. M.K. Sah et al., Advancement in “Garbage In Biomaterials Out (GIBO)” concept to develop biomaterials from agricultural waste for tissue engineering and biomedical applications. J. Environ. Health Sci. Eng. 20(2), 1015–1033 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. J. Cao, E. Su, Hydrophobic deep eutectic solvents: the new generation of green solvents for diversified and colorful applications in green chemistry. J. Clean. Prod. 314, 127965 (2021)

    Article  CAS  Google Scholar 

  142. A. Kumar et al., Polysaccharides, proteins, and synthetic polymers based multimodal hydrogels for various biomedical applications: a review. Int. J. Biol. Macromol. 247, 125606 (2023)

    Article  CAS  PubMed  Google Scholar 

  143. A.B. Ribeiro et al., Bio-based superabsorbent hydrogels for nutrient release. J. Environ. Chem. Eng. 12(2), 112031 (2024)

    Article  CAS  Google Scholar 

  144. T. Baydin et al., Long-term storage stability of type A and type B gelatin gels: the effect of Bloom strength and co-solutes. Food Hydrocoll. 127, 107535 (2022)

    Article  CAS  Google Scholar 

  145. J.J. Andrew, H. Dhakal, Sustainable biobased composites for advanced applications: recent trends and future opportunities–a critical review. Composites Part C 7, 100220 (2022)

    Google Scholar 

  146. C. Ma et al., Dynamic chemical cross-linking and mechanical training of bio-based polyamides fabricate strong and recyclable elastomers. ACS Sustain. Chem. Eng. 10(20), 6775–6783 (2022)

    Article  CAS  Google Scholar 

  147. Y. Gao, K. Peng, S. Mitragotri, Covalently crosslinked hydrogels via step-growth reactions: crosslinking chemistries, polymers, and clinical impact. Adv. Mater. 33(25), 2006362 (2021)

    Article  CAS  Google Scholar 

  148. L. Tie, W.-X. Zhang, Z. Deng, Ferrous ion-induced cellulose nanocrystals/alginate bio-based hydrogel for high efficiency tetracycline removal. Sep. Purif. Technol. 328, 125024 (2024)

    Article  CAS  Google Scholar 

  149. Y. Ma et al., Calcium spraying for fabricating collagen-alginate composite films with excellent wet mechanical properties. Food Hydrocoll. 124, 107340 (2022)

    Article  CAS  Google Scholar 

  150. K.Y. Ching et al., Genipin crosslinked chitosan/PEO nanofibrous scaffolds exhibiting an improved microenvironment for the regeneration of articular cartilage. J. Biomater. Appl. 36(3), 503–516 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. L. Qi et al., Progress in hydrogels for skin wound repair. Macromol. Biosci. 22(7), 2100475 (2022)

    Article  CAS  Google Scholar 

  152. A.A. Moud, Are mechanically adjusted cellulose nanocrystal (CNC)-based bio-targeted hydrogels satisfying the requirements of biologically based applications? (2022)

  153. M.A. Naniz et al., 4D printing: a cutting-edge platform for biomedical applications. Biomed. Mater. 17(6), 062001 (2022)

    Article  Google Scholar 

  154. S. Wu et al., Recent advances on sustainable bio-based materials for water treatment: fabrication, modification and application. J. Environ. Chem. Eng. 10(6), 108921 (2022)

    Article  CAS  Google Scholar 

  155. S.S. Siwal et al., Additive manufacturing of bio-based hydrogel composites: recent advances. J. Polym. Environ. 30(11), 4501–4516 (2022)

    Article  CAS  Google Scholar 

  156. R. Song et al., Enhanced strength for double network hydrogel adhesive through cohesion-adhesion balance. Adv. Funct. Mater. 34, 2313322 (2024)

    Article  CAS  Google Scholar 

  157. J. Li et al., Weak acid-initiated slow release of Dexamethasone from hydrogel to treat orbital inflammation. Theranostics 13(12), 4030 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  158. B. Canciani et al., In vitro and in vivo biocompatibility assessment of a thermosensitive injectable chitosan-based hydrogel for musculoskeletal tissue engineering. Int. J. Mol. Sci. 24(13), 10446 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. B. Farasati Far et al., Multi-responsive chitosan-based hydrogels for controlled release of vincristine. Commun. Chem. 6(1), 28 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. S. Mallakpour, E. Nikkhoo, C.M. Hussain, Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coord. Chem. Rev. 451, 214262 (2022)

    Article  CAS  Google Scholar 

  161. Q. Huang et al., Preparation of dendritic mesoporous silica/phenylboronic acid-modified hydroxypropyl chitosan and its glucose-responsive performance. Polym. Sci., Ser. A 63, 757–768 (2021)

    Article  CAS  Google Scholar 

  162. V. Singh et al., Silk fibroin hydrogel: a novel biopolymer for sustained release of vancomycin drug for diabetic wound healing. J. Mol. Struct. 1286, 135548 (2023)

    Article  CAS  Google Scholar 

  163. L. Chen et al., Biphasic release of betamethasone from an injectable HA hydrogel implant for alleviating lumbar disc herniation induced sciatica. Acta Biomater. 176, 173–189 (2024)

    Article  CAS  PubMed  Google Scholar 

  164. B. Farasati Far et al., A review on biomedical application of polysaccharide-based hydrogels with a focus on drug delivery systems. Polymers 14(24), 5432 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. T.A. Adjuik, S.E. Nokes, M.D. Montross, Biodegradability of bio-based and synthetic hydrogels as sustainable soil amendments: a review. J. Appl. Polym. Sci. 140(12), e53655 (2023)

    Article  CAS  Google Scholar 

  166. S. Saberianpour et al., Harnessing the interactions of wound exudate cells with dressings biomaterials for the control and prognosis of healing pathways. Pharmaceuticals 17(9), 1111 (2024)

    Article  PubMed  PubMed Central  Google Scholar 

  167. P. Ghandforoushan et al., Injectable and adhesive hydrogels for dealing with wounds. Expert Opin. Biol. Ther. 22(4), 519–533 (2022)

    Article  CAS  PubMed  Google Scholar 

  168. H. Chenani et al., Challenges and advances of hydrogel-based wearable electrochemical biosensors for real-time monitoring of biofluids: from lab to market. A review. Anal. Chem. 96(20), 8160–8183 (2024)

    Article  CAS  PubMed  Google Scholar 

  169. P. Kaur et al., Waste to high-value products: the performance and potential of carboxymethylcellulose hydrogels via the circular economy. Cellulose 30(5), 2713–2730 (2023)

    Article  CAS  Google Scholar 

  170. M. Zhang et al., Preparation of esterified biomass waste hydrogels and their removal of Pb2+, Cu2+ and Cd2+ from aqueous solution. Environ. Sci. Pollut. Res. 30(19), 56580–56593 (2023)

    Article  CAS  Google Scholar 

  171. K. Kumar et al., Biomass waste-derived carbon materials for sustainable remediation of polluted environments: a comprehensive review. Chemosphere 345, 140419 (2023)

    Article  CAS  PubMed  Google Scholar 

  172. I.N. Besiri, T.B. Goudoulas, N. Germann, Custom-made rheological setup for in situ real-time fast alginate-Ca2+ gelation. Carbohyd. Polym. 246, 116615 (2020)

    Article  CAS  Google Scholar 

  173. T. Jeoh et al., How alginate properties influence in situ internal gelation in crosslinked alginate microcapsules (CLAMs) formed by spray drying. PLoS ONE 16(2), e0247171 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. M. Azmana et al., A review on chitosan and chitosan-based bionanocomposites: promising material for combatting global issues and its applications. Int. J. Biol. Macromol. 185, 832–848 (2021)

    Article  CAS  PubMed  Google Scholar 

  175. P.S. Bakshi et al., Chitosan as an environment friendly biomaterial–a review on recent modifications and applications. Int. J. Biol. Macromol. 150, 1072–1083 (2020)

    Article  CAS  PubMed  Google Scholar 

  176. A. Rossatto et al., Hyaluronic acid production and purification techniques: a review. Prep. Biochem. Biotechnol. 53(1), 1–11 (2023)

    Article  CAS  PubMed  Google Scholar 

  177. K.C. Castro, M.G.N. Campos, L.H.I. Mei, Hyaluronic acid electrospinning: Challenges, applications in wound dressings and new perspectives. Int. J. Biol. Macromol. 173, 251–266 (2021)

    Article  CAS  PubMed  Google Scholar 

  178. E. Gachon, P. Mesquida, Mechanical properties of collagen fibrils determined by buckling analysis. Acta Biomater. 149, 60–68 (2022)

    Article  CAS  PubMed  Google Scholar 

  179. J. Duasa et al., An alternative source of collagen for Muslim consumers: halal and environmental concerns. J. Islam. Mark. 13(11), 2232–2253 (2022)

    Article  Google Scholar 

  180. Y. Liu et al., Tunable physical and mechanical properties of gelatin hydrogel after transglutaminase crosslinking on two gelatin types. Int. J. Biol. Macromol. 162, 405–413 (2020)

    Article  CAS  PubMed  Google Scholar 

  181. L. Mao et al., Transglutaminase modified type a gelatin gel: the influence of intra-molecular and inter-molecular cross-linking on structure-properties. Food Chem. 395, 133578 (2022)

    Article  CAS  PubMed  Google Scholar 

  182. I.V. Roberts et al., Fibrin matrices as (injectable) biomaterials: formation, clinical use, and molecular engineering. Macromol. Biosci. 20(1), 1900283 (2020)

    Article  CAS  Google Scholar 

  183. J. Du et al., The effect of fibrin on rheological behavior, gelling properties and microstructure of myofibrillar proteins. Lwt 153, 112457 (2022)

    Article  CAS  Google Scholar 

  184. F. Li, L. Foucat, E. Bonnin, Effect of solid loading on the behaviour of pectin-degrading enzymes. Biotechnol. Biofuels 14(1), 107 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. S. Basak, U.S. Annapure, Trends in “green” and novel methods of pectin modification-a review. Carbohyd. Polym. 278, 118967 (2022)

    Article  CAS  Google Scholar 

  186. Q. Hu, Y. Lu, Y. Luo, Recent advances in dextran-based drug delivery systems: from fabrication strategies to applications. Carbohyd. Polym. 264, 117999 (2021)

    Article  CAS  Google Scholar 

  187. W. Hyon, S.-H. Hyon, K. Matsumura, Evaluation of the optimal dose for maximizing the anti-adhesion performance of a self-degradable dextran-based material. Carbohydr. Polym. Technol. Appl. 4, 100255 (2022)

    CAS  Google Scholar 

  188. M. Du et al., Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair. Compos. B Eng. 215, 108790 (2021)

    Article  CAS  Google Scholar 

  189. J.A. Lett et al., Recent advances in natural polymer-based hydroxyapatite scaffolds: properties and applications. Eur. Polymer J. 148, 110360 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ministry of Higher Education Malaysia for providing financial support under Fundamental Research Grant Scheme (FRGS/1/2023/STG04/UMP/02/1) and Universiti Malaysia Pahang Al-Sultan Abdullah (RDU230137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ros Azlinawati Ramli.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest.

Research Involving Human & Animal Participants

On behalf of authors, corresponding author confirmed that there is no human participants and/or animals were conducted in this study.

Informed Consent

This review paper did not include any new studies involving human participants; therefore, informed consent was not required. The analysis and summary presented are based on findings from previously published research.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akter, M., Ramli, R.A. A Comprehensive Review on the Utilization of Biomaterials for Bio-Based Hydrogel in Therapeutic Applications. Biomedical Materials & Devices (2024). https://doi.org/10.1007/s44174-024-00247-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44174-024-00247-4

Keywords

Navigation