Abstract
Cognition in animals is produced by the self-organized activity of mutually entrained body and brain. Given that stigmergy plays a major role in self-organization of societies, we identify stigmergic behavior in cognitive systems, as a common mechanism ranging from brain activity to social systems. We analyze natural societies and artificial systems exploiting stigmergy to produce cognition. Several authors have identified the importance of stigmergy in the behavior and cognition of social systems. However, the perspective of stigmergy playing a central role in brain activity is novel, to the best of our knowledge. We present several evidences of such processes in the brain and discuss their importance in the formation of cognition. With this we try to motivate further research on stigmergy as a relevant component for intelligent systems.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
Werfel [71] uses the term extended stigmergy to designate such cases.
Traces left on their own are subject to environmental degradation and will eventually fade out.
“Quantitative” describes changes in existing representations and “qualitative” describes creation of new representations.
Minsky [41] proposed the idea of the mind as resulting from a set of agents working together in a kind of society, although without taking into account self-organization or stigmergy.
See for instance [26] for a series of articles on the activity of several hormones in the brain.
A slightly updated version of [19].
References
Araque, A., Parpura, V., Sanzgiri, R., Haydon, P.: Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22, 208–215 (1999)
Araque, A., Carmignoto, G., Haydon, P.G., Oliet, S., Robitaille, R., Volterra, A.: Gliotransmitters travel in time and space. Neuron 81, 728–739 (2014)
Bajcsy, R.: Active perception. Proc. IEEE 76(8), 996–1005 (1988)
Ballard, D.H.: Animate vision. Artif. Intell. 48(1), 57–86 (1991)
Bedau, M.A.: Artificial life: organization, adaptation and complexity from the bottom up. Trends Cogn. Sci. 7(11), 505–512 (2003)
Beer, R.D.: A dynamical systems perspective on agent–environment interaction. Artif. Intell. 72(1–2), 173–215 (1995)
Bezzi, P., Volterra, A.: A neuron-glia signalling network in the active brain. Curr. Opin. Neurobiol. 11(3), 387–394 (2001)
Bitbol, M., Luisi, P.L.: Autopoiesis with or without cognition: defining life at its edge. J. R. Soc. Interface 1(1), 99–107 (2004)
Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press Inc, New York (1999)
Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)
Brancucci, A.: Neural correlates of cognitive ability. J. Neurosci. Res. 90(7), 1299–1309 (2012)
Broggi, A., Cattani, S.: An agent based evolutionary approach to path detection for off-road vehicle guidance. Pattern Recognit. Lett. 27(11), 1164–1173 (2006)
Buzsáki, G., Schomburg, E.W.: What does gamma coherence tell us about inter-regional neural communication? Nat. Neurosci. 18(4), 484–489 (2015)
Chialvo, D.R., Millonas, M.M.: How swarms build cognitive maps. In: Steels, L. (ed) The Biology and Technology of Intelligent Autonomous Agents, vol. 144, NATO ASI Series, Springer, Berlin, Heidelberg, pp. 439–450 (1995)
Couzin, I.: Collective cognition in animal groups. Trends in Cognitive Sciences 13(1), 36–43 (2009)
Deneubourg, J.L., Goss, S., Franks, N., Pasteels, J.M.: The blind leading the blind: modeling chemically mediated army ant raid patterns. J. Insect Behav. 2(5), 719–725 (1989)
Dias, R., Rombo, D., Ribeiro, J., Henley, J., Sebastião, A.: Adenosine: setting the stage for plasticity. Trends Neurosci. 36, 248–257 (2013)
Doran, M.M., Hoffman, J.E., Scholl, B.J.: The role of eye fixations in concentration and amplification effects during multiple object tracking. Vis. Cognit. 17(4), 574–597 (2009)
Emerson, A.E.: Dynamic homeostasis: a unifying principle in organic, social, and ethical evolution. Sci. Mon. 78, 67–85 (1954)
Emerson, A.E.: Dynamic homeostasis. Zygon \({\textregistered }\) 3(2), 129–168 (1968)
Erny, D., Hrabe de Angelis, A., Prinz, M.: Communicating systems in the body: how microbiota and microglia cooperate. Immunol. (2016) (Epub Jul 9)
Fields, R.: A new mechanism of nervous system plasticity: activity-dependent myelination. Nat. Rev. Neurosci. 16, 756–767 (2015)
Floreano, D., Durr, P., Mattiussi, C.: Neuroevolution: from architectures to learning. Evol. Intell. 1(1), 47–62 (2008)
Franks, N.R.: Army ants: a collective intelligence. Am. Sci. 77(2), 138–145 (1989)
Fries, P.: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cognit. Sci. 9(10), 474–480 (2005)
Garcia-Segura, L.M., Nicola, A.F.D.: Hormones and the brain. Horm. Mol. Biol. Clin. Investig. 7(2) (2011)
Gattazzo, F., Urciuolo, A., Bonaldo, P.: Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim. et Biophys. Acta (BBA) Gen. Subj. 1840(8), 2506–2519 (2014)
Grassé, P.P.: La reconstruction du nid et les coordinations interindividuelles chez bellicositermes natalensis etcubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes Soc. 6(1), 41–80 (1959)
Haykin, S.: Neural Networks: A Comprehensive Foundation, 3rd edn. Prentice-Hall Inc, Upper Saddle River (2007)
Heylighen, F.: Accelerating socio-technological evolution: from ephemeralization and stigmergy to the global brain. CoRR arXiv:cs/0703004 (2007)
Heylighen, F.: Stigmergy as a Universal Coordination Mechanism: Components, Varieties and Applications. Human Stigmergy: Theoretical Developments and New Applications. Springer, Berlin (2015)
Heylighen, F.: Stigmergy as a universal coordination mechanism I: definition and components. Cognit. Syst. Res. 38, 4–13 (2016a)
Heylighen, F.: Stigmergy as a universal coordination mechanism II: varieties and evolution. Cognit. Syst. Res. 38, 50–59 (2016b)
Katona, I., Freund, T.: Multiple functions of endocannabinoid signaling in the brain. Annu. Rev Neurosci. 35, 58–529 (2012)
Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of IEEE International Conference on Neural Networks, IEEE Press, pp. 1942–1948 (1995)
Leadbeater, E., Chittka, L.: Social learning in insects-from miniature brains to consensus building. Current Biol. 17(16), R703–R713 (2007)
Marsden, J.: Stigmergic self-organization and the improvisation of ushahidi. Cognit. Syst. Res. 21, 52–64 (2013)
Marshall, J.A.R., Bogacz, R., Dornhaus, A., Planqué, R., Kovacs, T., Franks, N.R.: On optimal decision-making in brains and social insect colonies. J. R. Soc. Interface 6(40), 1065–1074 (2009)
Merks, R.: Stigmergy in Blood Vessel Growth: How Indirect Mechanical and Chemical Signaling, via the Extra-Cellular Matrix, Can Coordinate Collective Cell Behavior, Systems Biology Seminar Talk. University of Stuttgart, Stuttgart (2013)
Merks, R.M.: Cell-based modeling of cell-matrix interactions in angiogenesis. In: ITM Web of Conferences, EDP Sciences, vol. 5 (2015)
Minsky, M.: The Society of Mind. Simon & Schuster, New York (1988)
Mobahi, H., Ahmadabadi, M.N., Araabi, B.N.: Swarm contours: a fast self-organization approach for snake initialization. Complexity 12(1), 41–52 (2006)
Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Efficient model-based 3d tracking of hand articulations using kinect. In: Proceedings of the British machine vision conference (BMVC), vol. 1, pp. 1–11 (2011)
Owechko, Y., Medasani, S.: A swarm-based volition/attention framework for object recognition. In: Proceedings of the IEEE computer vision and pattern recognition workshop (CVPRW), IEEE, San Diego, vol. 3, pp. 91–98 (2005)
Pajevic, S., Basser, P., Fields, R.: Role of myelin plasticity in oscillations and synchrony of neuronal activity. Neuroscience 276, 135–147 (2014)
Parunak, H.V.D.: A survey of environments and mechanisms for human–human stigmergy. In: International workshop on environments for multi-agent systems, pp. 163–186. Springer, Berlin (2005)
Passino, K.M., Seeley, T.D., Visscher, P.K.: Swarm cognition in honey bees. Behav. Ecol. Sociobiol. 62(3), 401–414 (2008)
Pfeifer, R., Bongard, J.: How the Body Shapes the Way we Think: A New View of Intelligence. MIT Press, Cambridge (2006)
Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (2001)
Pierre, W., Smith, P.I.L., Chemtob, S., Mallard, C., Lodygensky, G.: Neonatal microglia: the cornerstone of brain fate. Brain Behav. Immun. (2016) (Epub Sep 3)
Poli, R., Valli, G.: Neural inhabitants of MR and echo images segment cardiac structures. In: Proceedings of the computers in cardiology, IEEE computer science society, London, pp. 193–196 (1993)
Pylyshyn, Z.W., Storm, R.W.: Tracking multiple independent targets: evidence for a parallel tracking mechanism. Spat. Vis. 3(3), 179 (1988)
Ransohoff, R.: How neuroinflammation contributes to neurodegeneration. Science 353, 777–783 (2016)
Reid, C.R., Latty, T., Dussutour, A., Beekman, M.: Slime mold uses an externalized spatial memory to navigate in complex environments. Proc. Natl. Acad. Sci. 109(43), 17490–17494 (2012)
Ribeiro, J., Sebastião, A.: Caffeine and adenosine. J. Alzheimers Dis. 20, S3–S15 (2010)
Rombo, D., Ribeiro, J., Sebastião, A.: Hippocampal GABAergic transmission: a new target for adenosine control of excitability. J. Neurochem. (2016) (Epub Oct 25)
Santana, P., Correia, L.: A swarm cognition realization of attention, action selection, and spatial memory. Adapt. Behav. 18(5), 428–447 (2010)
Santana, P., Correia, L.: Swarm cognition on off-road autonomous robots. Swarm Intell. 5(1), 45–72 (2011)
Santana, P., Mendonça, R., Correia, L., Barata, J.: Neural-swarm visual saliency for path following. Appl. Soft Comput. 13(6), 3021–3032 (2013)
Schmick, M., Bastiaens, P.I.: The interdependence of membrane shape and cellular signal processing. Cell 156(6), 1132–1138 (2014)
Schnitzler, A., Gross, J.: Normal and pathological oscillatory communication in the brain. Nat. Rev. Neurosci. 6, 285–296 (2005)
Sebastião, A., Ribeiro, J.: Neuromodulation and metamodulation by adenosine: impact and subtleties upon synaptic plasticity regulation. Brain Res. 1621, 102–113 (2015)
Solymosi, K., Köfalvi, A.: Cannabis: a treasure trove or pandora’s box? Mini Rev. Med. Chem. 16, 1–70 (2016)
Sporns, O., Lungarella, M.: Evolving coordinated behavior by maximizing information structure. In: Proceedings of ALife X, pp. 3–7. The MIT Press, Cambridge (2006)
Tabony, J.: Microtubules viewed as molecular ant colonies. Biol. Cell 98(10), 603–617 (2006)
Thelen, E., Smith, L.B.: A Dynamic Systems Approach to the Development of Cognition and Action. The MIT Press, Cambridge (1996)
Theraulaz, G., Bonabeau, E.: A brief history of stigmergy. Artif. Life 5(2), 97–116 (1999)
Trianni, V., Tuci, E., Passino, K., Marshall, J.: Swarm cognition: an interdisciplinary approach to the study of self-organising biological collectives. Swarm Intell. 5(1), 3–18 (2011)
Turner, J.S.: Termites as models of swarm cognition. Swarm Intell. 5(1), 19–43 (2011b)
van Veen, V., Krug, M.K., Carter, C.S.: The neural and computational basis of controlled speed-accuracy tradeoff during task performance. J. Cognit. Neurosci. 20(11), 1952–1965 (2008)
Werfel, J.: Anthills built to order: Automating construction with artificial swarms. Ph.D. thesis, MIT (2006)
Zhang, X., Hu, W., Maybank, S., Li, X., Zhu, M.: Sequential particle swarm optimization for visual tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). IEEE, Anchorage, pp. 1–8 (2008)
Author information
Authors and Affiliations
Corresponding author
Additional information
Partially supported by FCT under Grant UID/Multi/04046/2013 and Project ASSISIbf EU-ICU 601074. L. Correia and A.M. Sebastião are members of the Mind-Brain College of the University of Lisbon.
Rights and permissions
About this article
Cite this article
Correia, L., Sebastião, A.M. & Santana, P. On the role of stigmergy in cognition. Prog Artif Intell 6, 79–86 (2017). https://doi.org/10.1007/s13748-016-0107-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13748-016-0107-z