[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On the role of stigmergy in cognition

  • Short Communication
  • Published:
Progress in Artificial Intelligence Aims and scope Submit manuscript

Abstract

Cognition in animals is produced by the self-organized activity of mutually entrained body and brain. Given that stigmergy plays a major role in self-organization of societies, we identify stigmergic behavior in cognitive systems, as a common mechanism ranging from brain activity to social systems. We analyze natural societies and artificial systems exploiting stigmergy to produce cognition. Several authors have identified the importance of stigmergy in the behavior and cognition of social systems. However, the perspective of stigmergy playing a central role in brain activity is novel, to the best of our knowledge. We present several evidences of such processes in the brain and discuss their importance in the formation of cognition. With this we try to motivate further research on stigmergy as a relevant component for intelligent systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. Werfel [71] uses the term extended stigmergy to designate such cases.

  2. Traces left on their own are subject to environmental degradation and will eventually fade out.

  3. “Quantitative” describes changes in existing representations and “qualitative” describes creation of new representations.

  4. Minsky [41] proposed the idea of the mind as resulting from a set of agents working together in a kind of society, although without taking into account self-organization or stigmergy.

  5. See for instance [26] for a series of articles on the activity of several hormones in the brain.

  6. A slightly updated version of [19].

References

  1. Araque, A., Parpura, V., Sanzgiri, R., Haydon, P.: Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22, 208–215 (1999)

    Article  Google Scholar 

  2. Araque, A., Carmignoto, G., Haydon, P.G., Oliet, S., Robitaille, R., Volterra, A.: Gliotransmitters travel in time and space. Neuron 81, 728–739 (2014)

    Article  Google Scholar 

  3. Bajcsy, R.: Active perception. Proc. IEEE 76(8), 996–1005 (1988)

    Article  Google Scholar 

  4. Ballard, D.H.: Animate vision. Artif. Intell. 48(1), 57–86 (1991)

    Article  Google Scholar 

  5. Bedau, M.A.: Artificial life: organization, adaptation and complexity from the bottom up. Trends Cogn. Sci. 7(11), 505–512 (2003)

    Article  Google Scholar 

  6. Beer, R.D.: A dynamical systems perspective on agent–environment interaction. Artif. Intell. 72(1–2), 173–215 (1995)

    Article  Google Scholar 

  7. Bezzi, P., Volterra, A.: A neuron-glia signalling network in the active brain. Curr. Opin. Neurobiol. 11(3), 387–394 (2001)

    Article  Google Scholar 

  8. Bitbol, M., Luisi, P.L.: Autopoiesis with or without cognition: defining life at its edge. J. R. Soc. Interface 1(1), 99–107 (2004)

    Article  Google Scholar 

  9. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press Inc, New York (1999)

    MATH  Google Scholar 

  10. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Article  Google Scholar 

  11. Brancucci, A.: Neural correlates of cognitive ability. J. Neurosci. Res. 90(7), 1299–1309 (2012)

    Article  Google Scholar 

  12. Broggi, A., Cattani, S.: An agent based evolutionary approach to path detection for off-road vehicle guidance. Pattern Recognit. Lett. 27(11), 1164–1173 (2006)

    Article  Google Scholar 

  13. Buzsáki, G., Schomburg, E.W.: What does gamma coherence tell us about inter-regional neural communication? Nat. Neurosci. 18(4), 484–489 (2015)

    Article  Google Scholar 

  14. Chialvo, D.R., Millonas, M.M.: How swarms build cognitive maps. In: Steels, L. (ed) The Biology and Technology of Intelligent Autonomous Agents, vol. 144, NATO ASI Series, Springer, Berlin, Heidelberg, pp. 439–450 (1995)

  15. Couzin, I.: Collective cognition in animal groups. Trends in Cognitive Sciences 13(1), 36–43 (2009)

    Article  Google Scholar 

  16. Deneubourg, J.L., Goss, S., Franks, N., Pasteels, J.M.: The blind leading the blind: modeling chemically mediated army ant raid patterns. J. Insect Behav. 2(5), 719–725 (1989)

    Article  Google Scholar 

  17. Dias, R., Rombo, D., Ribeiro, J., Henley, J., Sebastião, A.: Adenosine: setting the stage for plasticity. Trends Neurosci. 36, 248–257 (2013)

    Article  Google Scholar 

  18. Doran, M.M., Hoffman, J.E., Scholl, B.J.: The role of eye fixations in concentration and amplification effects during multiple object tracking. Vis. Cognit. 17(4), 574–597 (2009)

    Article  Google Scholar 

  19. Emerson, A.E.: Dynamic homeostasis: a unifying principle in organic, social, and ethical evolution. Sci. Mon. 78, 67–85 (1954)

    Google Scholar 

  20. Emerson, A.E.: Dynamic homeostasis. Zygon \({\textregistered }\) 3(2), 129–168 (1968)

  21. Erny, D., Hrabe de Angelis, A., Prinz, M.: Communicating systems in the body: how microbiota and microglia cooperate. Immunol. (2016) (Epub Jul 9)

  22. Fields, R.: A new mechanism of nervous system plasticity: activity-dependent myelination. Nat. Rev. Neurosci. 16, 756–767 (2015)

    Article  Google Scholar 

  23. Floreano, D., Durr, P., Mattiussi, C.: Neuroevolution: from architectures to learning. Evol. Intell. 1(1), 47–62 (2008)

    Article  Google Scholar 

  24. Franks, N.R.: Army ants: a collective intelligence. Am. Sci. 77(2), 138–145 (1989)

    Google Scholar 

  25. Fries, P.: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cognit. Sci. 9(10), 474–480 (2005)

    Article  Google Scholar 

  26. Garcia-Segura, L.M., Nicola, A.F.D.: Hormones and the brain. Horm. Mol. Biol. Clin. Investig. 7(2) (2011)

  27. Gattazzo, F., Urciuolo, A., Bonaldo, P.: Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim. et Biophys. Acta (BBA) Gen. Subj. 1840(8), 2506–2519 (2014)

    Article  Google Scholar 

  28. Grassé, P.P.: La reconstruction du nid et les coordinations interindividuelles chez bellicositermes natalensis etcubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes Soc. 6(1), 41–80 (1959)

    Article  Google Scholar 

  29. Haykin, S.: Neural Networks: A Comprehensive Foundation, 3rd edn. Prentice-Hall Inc, Upper Saddle River (2007)

    MATH  Google Scholar 

  30. Heylighen, F.: Accelerating socio-technological evolution: from ephemeralization and stigmergy to the global brain. CoRR arXiv:cs/0703004 (2007)

  31. Heylighen, F.: Stigmergy as a Universal Coordination Mechanism: Components, Varieties and Applications. Human Stigmergy: Theoretical Developments and New Applications. Springer, Berlin (2015)

    Google Scholar 

  32. Heylighen, F.: Stigmergy as a universal coordination mechanism I: definition and components. Cognit. Syst. Res. 38, 4–13 (2016a)

    Article  Google Scholar 

  33. Heylighen, F.: Stigmergy as a universal coordination mechanism II: varieties and evolution. Cognit. Syst. Res. 38, 50–59 (2016b)

    Article  Google Scholar 

  34. Katona, I., Freund, T.: Multiple functions of endocannabinoid signaling in the brain. Annu. Rev Neurosci. 35, 58–529 (2012)

    Article  Google Scholar 

  35. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of IEEE International Conference on Neural Networks, IEEE Press, pp. 1942–1948 (1995)

  36. Leadbeater, E., Chittka, L.: Social learning in insects-from miniature brains to consensus building. Current Biol. 17(16), R703–R713 (2007)

    Article  Google Scholar 

  37. Marsden, J.: Stigmergic self-organization and the improvisation of ushahidi. Cognit. Syst. Res. 21, 52–64 (2013)

    Article  Google Scholar 

  38. Marshall, J.A.R., Bogacz, R., Dornhaus, A., Planqué, R., Kovacs, T., Franks, N.R.: On optimal decision-making in brains and social insect colonies. J. R. Soc. Interface 6(40), 1065–1074 (2009)

    Article  Google Scholar 

  39. Merks, R.: Stigmergy in Blood Vessel Growth: How Indirect Mechanical and Chemical Signaling, via the Extra-Cellular Matrix, Can Coordinate Collective Cell Behavior, Systems Biology Seminar Talk. University of Stuttgart, Stuttgart (2013)

    Google Scholar 

  40. Merks, R.M.: Cell-based modeling of cell-matrix interactions in angiogenesis. In: ITM Web of Conferences, EDP Sciences, vol. 5 (2015)

  41. Minsky, M.: The Society of Mind. Simon & Schuster, New York (1988)

    Google Scholar 

  42. Mobahi, H., Ahmadabadi, M.N., Araabi, B.N.: Swarm contours: a fast self-organization approach for snake initialization. Complexity 12(1), 41–52 (2006)

    Article  Google Scholar 

  43. Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Efficient model-based 3d tracking of hand articulations using kinect. In: Proceedings of the British machine vision conference (BMVC), vol. 1, pp. 1–11 (2011)

  44. Owechko, Y., Medasani, S.: A swarm-based volition/attention framework for object recognition. In: Proceedings of the IEEE computer vision and pattern recognition workshop (CVPRW), IEEE, San Diego, vol. 3, pp. 91–98 (2005)

  45. Pajevic, S., Basser, P., Fields, R.: Role of myelin plasticity in oscillations and synchrony of neuronal activity. Neuroscience 276, 135–147 (2014)

    Article  Google Scholar 

  46. Parunak, H.V.D.: A survey of environments and mechanisms for human–human stigmergy. In: International workshop on environments for multi-agent systems, pp. 163–186. Springer, Berlin (2005)

  47. Passino, K.M., Seeley, T.D., Visscher, P.K.: Swarm cognition in honey bees. Behav. Ecol. Sociobiol. 62(3), 401–414 (2008)

    Article  Google Scholar 

  48. Pfeifer, R., Bongard, J.: How the Body Shapes the Way we Think: A New View of Intelligence. MIT Press, Cambridge (2006)

    Google Scholar 

  49. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (2001)

    Google Scholar 

  50. Pierre, W., Smith, P.I.L., Chemtob, S., Mallard, C., Lodygensky, G.: Neonatal microglia: the cornerstone of brain fate. Brain Behav. Immun. (2016) (Epub Sep 3)

  51. Poli, R., Valli, G.: Neural inhabitants of MR and echo images segment cardiac structures. In: Proceedings of the computers in cardiology, IEEE computer science society, London, pp. 193–196 (1993)

  52. Pylyshyn, Z.W., Storm, R.W.: Tracking multiple independent targets: evidence for a parallel tracking mechanism. Spat. Vis. 3(3), 179 (1988)

    Article  Google Scholar 

  53. Ransohoff, R.: How neuroinflammation contributes to neurodegeneration. Science 353, 777–783 (2016)

    Article  Google Scholar 

  54. Reid, C.R., Latty, T., Dussutour, A., Beekman, M.: Slime mold uses an externalized spatial memory to navigate in complex environments. Proc. Natl. Acad. Sci. 109(43), 17490–17494 (2012)

    Article  Google Scholar 

  55. Ribeiro, J., Sebastião, A.: Caffeine and adenosine. J. Alzheimers Dis. 20, S3–S15 (2010)

    Google Scholar 

  56. Rombo, D., Ribeiro, J., Sebastião, A.: Hippocampal GABAergic transmission: a new target for adenosine control of excitability. J. Neurochem. (2016) (Epub Oct 25)

  57. Santana, P., Correia, L.: A swarm cognition realization of attention, action selection, and spatial memory. Adapt. Behav. 18(5), 428–447 (2010)

    Article  Google Scholar 

  58. Santana, P., Correia, L.: Swarm cognition on off-road autonomous robots. Swarm Intell. 5(1), 45–72 (2011)

    Article  Google Scholar 

  59. Santana, P., Mendonça, R., Correia, L., Barata, J.: Neural-swarm visual saliency for path following. Appl. Soft Comput. 13(6), 3021–3032 (2013)

    Article  Google Scholar 

  60. Schmick, M., Bastiaens, P.I.: The interdependence of membrane shape and cellular signal processing. Cell 156(6), 1132–1138 (2014)

    Article  Google Scholar 

  61. Schnitzler, A., Gross, J.: Normal and pathological oscillatory communication in the brain. Nat. Rev. Neurosci. 6, 285–296 (2005)

    Article  Google Scholar 

  62. Sebastião, A., Ribeiro, J.: Neuromodulation and metamodulation by adenosine: impact and subtleties upon synaptic plasticity regulation. Brain Res. 1621, 102–113 (2015)

    Article  Google Scholar 

  63. Solymosi, K., Köfalvi, A.: Cannabis: a treasure trove or pandora’s box? Mini Rev. Med. Chem. 16, 1–70 (2016)

    Google Scholar 

  64. Sporns, O., Lungarella, M.: Evolving coordinated behavior by maximizing information structure. In: Proceedings of ALife X, pp. 3–7. The MIT Press, Cambridge (2006)

  65. Tabony, J.: Microtubules viewed as molecular ant colonies. Biol. Cell 98(10), 603–617 (2006)

    Article  Google Scholar 

  66. Thelen, E., Smith, L.B.: A Dynamic Systems Approach to the Development of Cognition and Action. The MIT Press, Cambridge (1996)

    Google Scholar 

  67. Theraulaz, G., Bonabeau, E.: A brief history of stigmergy. Artif. Life 5(2), 97–116 (1999)

    Article  Google Scholar 

  68. Trianni, V., Tuci, E., Passino, K., Marshall, J.: Swarm cognition: an interdisciplinary approach to the study of self-organising biological collectives. Swarm Intell. 5(1), 3–18 (2011)

    Article  Google Scholar 

  69. Turner, J.S.: Termites as models of swarm cognition. Swarm Intell. 5(1), 19–43 (2011b)

    Article  Google Scholar 

  70. van Veen, V., Krug, M.K., Carter, C.S.: The neural and computational basis of controlled speed-accuracy tradeoff during task performance. J. Cognit. Neurosci. 20(11), 1952–1965 (2008)

    Article  Google Scholar 

  71. Werfel, J.: Anthills built to order: Automating construction with artificial swarms. Ph.D. thesis, MIT (2006)

  72. Zhang, X., Hu, W., Maybank, S., Li, X., Zhu, M.: Sequential particle swarm optimization for visual tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). IEEE, Anchorage, pp. 1–8 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Correia.

Additional information

Partially supported by FCT under Grant UID/Multi/04046/2013 and Project ASSISIbf EU-ICU 601074. L. Correia and A.M. Sebastião are members of the Mind-Brain College of the University of Lisbon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correia, L., Sebastião, A.M. & Santana, P. On the role of stigmergy in cognition. Prog Artif Intell 6, 79–86 (2017). https://doi.org/10.1007/s13748-016-0107-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13748-016-0107-z

Keywords

Navigation