Abstract
Chemoresistance, radioresistance, and facile spreading of laryngeal squamous cell carcinoma (LSCC) make the practically clinical treatment invalid. Such dismal outcome mainly originates from the lack of effective biomarkers which are highly desirable to understand the pathogenesis of LSCC, and strives to find promising novel biomarkers to improve early screening, effective treatment, and prognosis evaluation in LSCC. Recently, long non-coding RNAs (lncRNAs), a kind of non-coding RNAs longer than 200 nucleotides, can participate in the process of tumorigenesis and progression through many regulatory modalities, such as epigenetic transcriptional regulation and post-transcriptional regulation. Meanwhile, microRNAs (miRNAs, miRs), essentially involved in the post-transcriptional regulation of gene expression, are aberrantly expressed in cancer-related genomic regions or susceptible sites. An increasing number of studies have shown that lncRNAs are important regulators of miRNAs expression in LSCC, and that miRNAs can also target to regulate the expression of lncRNAs, and they can target to regulate downstream messenger RNAs (mRNAs) transcriptionally or post-transcriptionally, thereby affecting various physiopathological processes of LSCC. Complex cross-regulatory networks existing among lncRNAs, miRNAs, and mRNAs can regulate the tumorigenesis and development of LSCC. Such networks may become promising biomarkers and potential therapeutic targets in the research field of LSCC. In this review, we mainly summarize the latest research progress on the regulatory relationships among lncRNAs, miRNAs, and downstream mRNAs, and highlight the potential applications of lncRNA–miRNA–mRNA regulatory networks as biomarkers for the early diagnosis, epithelial–mesenchymal transition (EMT) process, chemoresistance, radioresistance, and prognosis of LSCC, aiming to provide important clues for understanding the pathogenesis of LSCC and developing new diagnostic and therapeutic strategies.
Similar content being viewed by others
Data availability
Not applicable.
References
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30. https://doi.org/10.3322/caac.21332.
Lefebvre JL, Andry G, Chevalier D, et al. Laryngeal preservation with induction chemotherapy for hypopharyngeal squamous cell carcinoma: 10-year results of EORTC trial 24891. Ann Oncol. 2012;23(10):2708–14. https://doi.org/10.1093/annonc/mds065.
Mendenhall WM, Dagan R, Bryant CM, Amdur RJ, Mancuso AA. Definitive radiotherapy for squamous cell carcinoma of the glottic larynx. Cancer Control. 2016;23(3):208–12. https://doi.org/10.1177/107327481602300303.
Steuer CE, El-Deiry M, Parks JR, Higgins KA, Saba NF. An update on larynx cancer. CA Cancer J Clin. 2017;67(1):31–50. https://doi.org/10.3322/caac.21386.
Baird BJ, Sung CK, Beadle BM, Divi V. Treatment of early-stage laryngeal cancer: a comparison of treatment options. Oral Oncol. 2018;87:8–16. https://doi.org/10.1016/j.oraloncology.2018.09.012.
Cosetti M, Yu GP, Schantz SP. Five-year survival rates and time trends of laryngeal cancer in the US population. Arch Otolaryngol Head Neck Surg. 2008;134(4):370–9. https://doi.org/10.1001/archotol.134.4.370.
Govindan SV, Kulsum S, Pandian RS, et al. Establishment and characterization of triple drug resistant head and neck squamous cell carcinoma cell lines. Mol Med Rep. 2015;12(2):3025–32. https://doi.org/10.3892/mmr.2015.3768.
Arshad H, Jayaprakash V, Gupta V, et al. Survival differences between organ preservation surgery and definitive radiotherapy in early supraglottic squamous cell carcinoma. Otolaryngol Head Neck Surg. 2014;150(2):237–44. https://doi.org/10.1177/0194599813512783.
Kato H, Torigoe T. Radioimmunoassay for tumor antigen of human cervical squamous cell carcinoma. Cancer. 1977;40(4):1621–8. https://doi.org/10.1002/1097-0142(197710)40:4%3c1621::aid-cncr2820400435%3e3.0.co;2-i.
Zhu H. Squamous cell carcinoma antigen: clinical application and research status. Diagnostics (Basel). 2022;12(5):1065. https://doi.org/10.3390/diagnostics12051065.
Chen L, Luo T, Yang J, et al. Assessment of serum synuclein-γ and squamous cell carcinoma antigen as diagnostic biomarkers in patients with oral squamous cell carcinoma and oral potentially malignant disorders. J Oral Pathol Med. 2021;50(2):165–74. https://doi.org/10.1111/jop.13115.
Holdenrieder S, Molina R, Qiu L, et al. Technical and clinical performance of a new assay to detect squamous cell carcinoma antigen levels for the differential diagnosis of cervical, lung, and head and neck cancer. Tumour Biol. 2018;40(4):1010428318772202. https://doi.org/10.1177/1010428318772202.
Huang SF, Wei FC, Liao CT, et al. Risk stratification in oral cavity squamous cell carcinoma by preoperative CRP and SCC antigen levels. Ann Surg Oncol. 2012;19(12):3856–64. https://doi.org/10.1245/s10434-012-2392-5.
Barak V, Meirovitz A, Leibovici V, et al. The diagnostic and prognostic value of tumor markers (CEA, SCC, CYFRA 21–1, TPS) in head and neck cancer patients. Anticancer Res. 2015;35(10):5519–24.
Lin WH, Chen IH, Wei FC, et al. Clinical significance of preoperative squamous cell carcinoma antigen in oral-cavity squamous cell carcinoma. Laryngoscope. 2011;121(5):971–7. https://doi.org/10.1002/lary.21721.
Richard BC. Non-coding RNA: It’s Not Junk. Dig Dis Sci. 2017;62(5):1107–9. https://doi.org/10.1007/s10620-017-4506-1.
Takeuchi T, Kawasaki H, Luce A, et al. Insight toward the MicroRNA profiling of laryngeal cancers: biological role and clinical impact. Int J Mol Sci. 2020;21(10):3693. https://doi.org/10.3390/ijms21103693.
Zhao J, Liu D, Yang H, Yu S, He H. Long noncoding RNAs in head and neck squamous cell carcinoma: biological functions and mechanisms. Mol Biol Rep. 2020;47(10):8075–90. https://doi.org/10.1007/s11033-020-05777-w.
Yu X, Li Z. The role of microRNAs expression in laryngeal cancer. Oncotarget. 2015;6(27):23297–305.
Tsai MC, Spitale RC, Chang HY. Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res. 2011;71(1):3–7. https://doi.org/10.1158/0008-5472.CAN-10-2483.
Wang X, Arai S, Song X, et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature. 2008;454(7200):126–30. https://doi.org/10.1038/nature06992.
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33. https://doi.org/10.1016/j.cell.2009.01.002.
Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105. https://doi.org/10.1101/gr.082701.108.
Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146(3):353–8. https://doi.org/10.1016/j.cell.2011.07.014.
Chan JJ, Tay Y. Noncoding RNA:RNA regulatory networks in cancer. Int J Mol Sci. 2018;19(5):1310. https://doi.org/10.3390/ijms19051310.
Goodall GJ, Wickramasinghe VO. RNA in cancer. Nat Rev Cancer. 2021;21(1):22–36. https://doi.org/10.1038/s41568-020-00306-0.
He Q, Tian L, Jiang H, et al. Identification of laryngeal cancer prognostic biomarkers using an inflammatory gene-related, competitive endogenous RNA network. Oncotarget. 2017;8(6):9525–34.
Shi Y, Yang D, Qin Y. Identifying prognostic lncRNAs based on a ceRNA regulatory network in laryngeal squamous cell carcinoma. BMC Cancer. 2021;21(1):705. https://doi.org/10.1186/s12885-021-08422-2.
Williams GT, Farzaneh F. Are snoRNAs and snoRNA host genes new players in cancer? Nat Rev Cancer. 2012;12(2):84–8. https://doi.org/10.1038/nrc3195.
Zimta AA, Tigu AB, Braicu C, Stefan C, Ionescu C, Berindan-Neagoe I. An emerging class of long non-coding rna with oncogenic role arises from the snorna host genes. Front Oncol. 2020;10:389. https://doi.org/10.3389/fonc.2020.00389.
Wang L, Su K, Wu H, Li J, Song D. LncRNA SNHG3 regulates laryngeal carcinoma proliferation and migration by modulating the miR-384/WEE1 axis. Life Sci. 2019;232: 116597. https://doi.org/10.1016/j.lfs.2019.116597.
Kang R, Yao DF, Xu GZ, Zhou YH. The knockdown of SNHG3 inhibits the progression of laryngeal squamous cell carcinoma by miR-340-5p/YAP1 axis and Wnt/β-catenin pathway. Neoplasma. 2020;67(5):1094–105. https://doi.org/10.4149/neo_2020_191022N1073.
Li J, Sun S, Chen W, Yuan K. Small Nucleolar RNA Host Gene 12 (SNHG12) promotes proliferation and invasion of laryngeal cancer cells via sponging mir-129–5p and potentiating ww domain-containing e3 ubiquitin protein ligase 1 (WWP1) Expression. Med Sci Monit. 2019;25:5552–60.
Lin Q, Zheng H, Xu J, Zhang F, Pan H. LncRNA SNHG16 aggravates tumorigenesis and development of hepatocellular carcinoma by sponging miR-4500 and targeting STAT3. J Cell Biochem. 2019. https://doi.org/10.1002/jcb.28440.10.1002/jcb.28440.
Wan L, Gu D, Li P. LncRNA SNHG16 promotes proliferation and migration in laryngeal squamous cell carcinoma via the miR-140-5p/NFAT5/Wnt/β-catenin pathway axis. Pathol Res Pract. 2022;229: 153727. https://doi.org/10.1016/j.prp.2021.153727.
Pintacuda G, Young AN, Cerase A. Function by structure: spotlights on Xist Long Non-coding RNA. Front Mol Biosci. 2017;4:90. https://doi.org/10.3389/fmolb.2017.00090.
Xiao D, Cui X, Wang X. Long noncoding RNA XIST increases the aggressiveness of laryngeal squamous cell carcinoma by regulating miR-124-3p/EZH2. Exp Cell Res. 2019;381(2):172–8. https://doi.org/10.1016/j.yexcr.2019.04.034.
Cui CL, Li YN, Cui XY, Wu X. lncRNA XIST promotes the progression of laryngeal squamous cell carcinoma by sponging miR-144 to regulate IRS1 expression. Oncol Rep. 2020;43(2):525–35. https://doi.org/10.3892/or.2019.7438.
Liu C, Lu Z, Liu H, Zhuang S, Guo P. LncRNA XIST promotes the progression of laryngeal squamous cell carcinoma via sponging miR-125b-5p to modulate TRIB2. 2020. Biosci Rep. https://doi.org/10.1042/BSR20193172.
Liu F, Xiao Y, Ma L, Wang J. Regulating of cell cycle progression by the lncRNA CDKN2B-AS1/miR-324-5p/ROCK1 axis in laryngeal squamous cell cancer. Int J Biol Markers. 2020;35(1):47–56. https://doi.org/10.1177/1724600819898489.
Chen X, Zhang L, Tang S. MicroRNA-4497 functions as a tumor suppressor in laryngeal squamous cell carcinoma via negatively modulation the GBX2. Auris Nasus Larynx. 2019;46(1):106–13. https://doi.org/10.1016/j.anl.2018.05.005.
Chen X, Cheng P, Hu C. LncRNA FEZF1-AS1 accelerates the migration and invasion of laryngeal squamous cell carcinoma cells through miR-4497 targeting GBX2. Eur Arch Otorhinolaryngol. 2021;278(5):1523–35. https://doi.org/10.1007/s00405-021-06636-5.
Ma B, Ren G, Xu J, Yin C, Shi Y. LncRNA MNX1-AS1 contributes to laryngeal squamous cell carcinoma growth and migration by regulating mir-744-5p/bcl9/β-Catenin Axis. Cell Transplant. 2021;30:9636897211005682. https://doi.org/10.1177/09636897211005682.
Ren P, Niu X, Zhao R, et al. Long non-coding RNA AGAP2-AS1 promotes cell proliferation and invasion through regulating miR-193a-3p/LOXL4 axis in laryngeal squamous cell carcinoma. Cell Cycle. 2022;21(7):697–707. https://doi.org/10.1080/15384101.2021.2016197.
Wan L, Gu D, Jin X. LncRNA NCK1-AS1 Promotes malignant cellular phenotypes of laryngeal squamous cell carcinoma via miR-137/NCK1 Axis. Mol Biotechnol. 2022;64(8):888–901. https://doi.org/10.1007/s12033-022-00469-1.
Nojima T, Proudfoot NJ. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat Rev Mol Cell Biol. 2022;23(6):389–406. https://doi.org/10.1038/s41580-021-00447-6.
Mercer TR, Munro T, Mattick JS. The potential of long noncoding RNA therapies. Trends Pharmacol Sci. 2022;43(4):269–80. https://doi.org/10.1016/j.tips.2022.01.008.
Liu DM, Yang H, Yuan ZN, Yang XG, Pei R, He HJ. Long noncoding RNA LINC01194 enhances the malignancy of laryngeal squamous cell carcinoma by sponging miR-655 to increase SOX18 expression. Biochem Biophys Res Commun. 2020;529(2):148–55. https://doi.org/10.1016/j.bbrc.2020.05.178.
Zhang H, Zhao X, Wang M, Ji W. Long noncoding RNA LINC01638 contributes to laryngeal squamous cell cancer progression by modulating miR-523–5p/BATF3 axis. Aging (Albany NY). 2021;13(6):8611–9.
Li W, Hu X, Huang X. Long intergenic non-protein coding RNA 847 promotes laryngeal squamous cell carcinoma progression through the microRNA-181a-5p/zinc finger E-box binding homeobox 2 axis. Bioengineered. 2022;13(4):9987–10000. https://doi.org/10.1080/21655979.2022.2062531.
Wang XY, Wang L, Xu PC, et al. LINC01605 promotes the proliferation of laryngeal squamous cell carcinoma through targeting miR-493–3p. Eur Rev Med Pharmacol Sci. 2019;23(23):10379–86.
Wang P, Wu T, Zhou H, et al. Long noncoding RNA NEAT1 promotes laryngeal squamous cell cancer through regulating miR-107/CDK6 pathway. J Exp Clin Cancer Res. 2016;35:22. https://doi.org/10.1186/s13046-016-0297-z.
Liu T, Wang W, Xu YC, Li ZW, Zhou J. Long noncoding RNA NEAT1 functions as an oncogene in human laryngocarcinoma by targeting miR-29a-3p. Eur Rev Med Pharmacol Sci. 2019;23(14):6234–41.
Zhang J, Wang P, Cui Y. Long noncoding RNA NEAT1 inhibits the acetylation of PTEN through the miR-524–5p /HDAC1 axis to promote the proliferation and invasion of laryngeal cancer cells. Aging. 2021;13(22):24850–65.
Liu Z, Chen Q, Hann SS. The functions and oncogenic roles of CCAT1 in human cancer. Biomed Pharmacother. 2019;115: 108943. https://doi.org/10.1016/j.biopha.2019.108943.
Zhang Y, Hu H. Long non-coding RNA CCAT1/miR-218/ZFX axis modulates the progression of laryngeal squamous cell cancer. Tumour Biol. 2017;39(6):1010428317699417. https://doi.org/10.1177/1010428317699417.
Hong J, Hong A, Tu H, et al. LncRNA CCAT1 facilitates the proliferation, invasion and migration of human laryngeal squamous cell carcinoma cells via the miR-218-5p/BMI1. PeerJ. 2022;10: e12961. https://doi.org/10.7717/peerj.12961.
Wang W, Zhou R, Wu Y, et al. PVT1 promotes cancer progression via MicroRNAs. Front Oncol. 2019;9:609. https://doi.org/10.3389/fonc.2019.00609.
Zheng X, Zhao K, Liu T, Liu L, Zhou C, Xu M. Long noncoding RNA PVT1 promotes laryngeal squamous cell carcinoma development by acting as a molecular sponge to regulate miR-519d-3p. J Cell Biochem. 2019;120(3):3911–21. https://doi.org/10.1002/jcb.27673.
Chiossone L, Dumas PY, Vienne M, Vivier E. Natural killer cells and other innate lymphoid cells in cancer. Nat Rev Immunol. 2018;18(11):671–88. https://doi.org/10.1038/s41577-018-0061-z.
Vivier E, Artis D, Colonna M, et al. Innate lymphoid cells: 10 years on. Cell. 2018;174(5):1054–66. https://doi.org/10.1016/j.cell.2018.07.017.
Tang T, Zeng F. NFIB-Mediated lncRNA PVT1 aggravates laryngeal squamous cell carcinoma progression via the mir-1301-3p/mbnl1 axis. J Immunol Res. 2021;2021:8675123. https://doi.org/10.1155/2021/8675123.
Ma P, Li L, Liu F, Zhao Q. HNF1A-Induced lncRNA HCG18 Facilitates Gastric Cancer Progression by Upregulating DNAJB12 via miR-152-3p. Onco Targets Ther. 2020;13:7641–52. https://doi.org/10.2147/OTT.S253391.
Li S, Wu T, Zhang D, Sun X, Zhang X. The long non-coding RNA HCG18 promotes the growth and invasion of colorectal cancer cells through sponging miR-1271 and upregulating MTDH/Wnt/β-catenin. Clin Exp Pharmacol Physiol. 2020;47(4):703–12. https://doi.org/10.1111/1440-1681.13230.
Li W, Pan T, Jiang W, Zhao H. HCG18/miR-34a-5p/HMMR axis accelerates the progression of lung adenocarcinoma. Biomed Pharmacother. 2020;129: 110217. https://doi.org/10.1016/j.biopha.2020.110217.
Peng H, Ge P. Long non-coding RNA HCG18 facilitates the progression of laryngeal and hypopharyngeal squamous cell carcinoma by upregulating FGFR1 via miR-133b. Mol Med Rep. 2022;25(2):46. https://doi.org/10.3892/mmr.2021.12562.
Sun YD, Liu Q, Yang HX, et al. Long non-coding RNA UCA1 mediates proliferation and metastasis of laryngeal squamous cell carcinoma cells via regulating miR-185–5p/HOXA13 axis. Eur Rev Med Pharmacol Sci. 2021;25(3):1366–78.
Zhuang S, Liu F, Wu P. Upregulation of long noncoding RNA TUG1 contributes to the development of laryngocarcinoma by targeting miR-145-5p/ROCK1 axis. J Cell Biochem. 2019;120(8):13392–402. https://doi.org/10.1002/jcb.28614.
Zhao L, Zheng Y, Zhang L, Su L. E2F1-Induced FTH1P3 promoted cell viability and glycolysis through mir-377-3p/ldha axis in laryngeal squamous cell carcinoma. Cancer Biother Radiopharm. 2022;37(4):276–86. https://doi.org/10.1089/cbr.2020.4266.
Yuan X, Shen Q, Ma W. Long Noncoding RNA hotair promotes the progression and immune escape in laryngeal squamous cell carcinoma through MicroRNA-30a/GRP78/PD-L1 Axis. J Immunol Res. 2022;2022:5141426. https://doi.org/10.1155/2022/5141426.
Hu W, Dong N, Huang J, Ye B. Long non-coding RNA PCAT1 promotes cell migration and invasion in human laryngeal cancer by sponging miR-210-3p. J BUON. 2019;24(6):2429–34.
Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. 2018;19(2):81–92. https://doi.org/10.1038/nrg.2017.80.
Pan Y, Liu G, Zhou F, Su B, Li Y. DNA methylation profiles in cancer diagnosis and therapeutics. Clin Exp Med. 2018;18(1):1–14. https://doi.org/10.1007/s10238-017-0467-0.
Wang X, Yu B, Jin Q, et al. Regulation of laryngeal squamous cell cancer progression by the lncRNA RP11–159K7.2/miR-206/DNMT3A axis. J Cell Mol Med. 2020;24(12):6781–95.
Wu T, Qu L, He G, et al. Regulation of laryngeal squamous cell cancer progression by the lncRNA H19/miR-148a-3p/DNMT1 axis. Oncotarget. 2016;7(10):11553–66.
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.
Deshpande A, Sicinski P, Hinds PW. Cyclins and cdks in development and cancer: a perspective. Oncogene. 2005;24(17):2909–15. https://doi.org/10.1038/sj.onc.1208618.
Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9(3):153–66. https://doi.org/10.1038/nrc2602.
Zhao Z, Xing Y, Liu Y, Jing S. Lung cancer-associated transcript 1 facilitates tumorigenesis in laryngeal squamous cell carcinoma through the targeted inhibition of miR-493. Mol Med Rep. 2021;23(1):59. https://doi.org/10.3892/mmr.2020.11697.
Yang S, Wang J, Ge W, Jiang Y. Long non-coding RNA LOC554202 promotes laryngeal squamous cell carcinoma progression through regulating miR-31. J Cell Biochem. 2018;119(8):6953–60. https://doi.org/10.1002/jcb.26902.
Lyu K, Li Y, Xu Y, et al. Using RNA sequencing to identify a putative lncRNA-associated ceRNA network in laryngeal squamous cell carcinoma. RNA Biol. 2020;17(7):977–89. https://doi.org/10.1080/15476286.2020.1741282.
Mansoori Y, Tabei MB, Askari A, et al. Expression levels of breast cancer-related GAS5 and LSINCT5 lncRNAs in cancer-free breast tissue: Molecular associations with age at menarche and obesity. Breast J. 2018;24(6):876–82. https://doi.org/10.1111/tbj.13067.
Wang Y, Jing W, Ma W, Liang C, Chai H, Tu J. Down-regulation of long non-coding RNA GAS5-AS1 and its prognostic and diagnostic significance in hepatocellular carcinoma. Cancer Biomark. 2018;22(2):227–36. https://doi.org/10.3233/CBM-170781.
Li Y, Gu J, Lu H. The GAS5/miR-222 axis regulates proliferation of gastric cancer cells through the PTEN/Akt/mTOR pathway. Dig Dis Sci. 2017;62(12):3426–37. https://doi.org/10.1007/s10620-017-4831-4.
Wang J, Zhu Y, Ni S, Liu S. LncRNA GAS5 suppressed proliferation and promoted apoptosis in laryngeal squamous cell Carcinoma by Targeting MiR-26a-5p and Modifying ULK2. Cancer Manag Res. 2021;13:871–87. https://doi.org/10.2147/CMAR.S250778.
Liu T, Meng W, Cao H, et al. lncRNA RASSF8-AS1 suppresses the progression of laryngeal squamous cell carcinoma via targeting the miR-664b-3p/TLE1 axis. Oncol Rep. 2020;44(5):2031–44. https://doi.org/10.3892/or.2020.7771.
Li Y, Tang B, Lyu K, et al. Low expression of lncRNA SBF2-AS1 regulates the miR-302b-3p/TGFBR2 axis, promoting metastasis in laryngeal cancer. Mol Carcinog. 2022;61(1):45–58. https://doi.org/10.1002/mc.23358.
Zhang X, Wu N, Wang J, Li Z. LncRNA MEG3 inhibits cell proliferation and induces apoptosis in laryngeal cancer via miR-23a/APAF-1 axis. J Cell Mol Med. 2019;23(10):6708–19. https://doi.org/10.1111/jcmm.14549.
Chen H, Ali M, Ruben A, Stelmakh D, Pak M. E2F6-mediated downregulation of MIR22HG facilitates the progression of laryngocarcinoma by targeting the miR-5000-3p/FBXW7 Axis. Mol Cell Biol. 2020;40(10):e00496-e519. https://doi.org/10.1128/MCB.00496-19.
Xue HX, Li HF, Wang T, Li WJ, Bian WC. LncRNA HCG11 suppresses laryngeal carcinoma cells progression via sponging miR-4469/APOM axis. Eur Rev Med Pharmacol Sci. 2020;24(6):3174–82.
Zhu HR, Yu XN, Zhang GC, et al. Comprehensive analysis of long non-coding RNA-messenger RNA-microRNA co-expression network identifies cell cycle-related lncRNA in hepatocellular carcinoma. Int J Mol Med. 2019;44(5):1844–54. https://doi.org/10.3892/ijmm.2019.4323.
Huang Y, Li Z, Zhong Q, Li G, Zhang Y, Huang Z. Association of TBX2 and P21 expression with clinicopathological features and survival of laryngeal squamous cell carcinoma. Int J Clin Exp Med. 2014;7(12):5394–402.
Cao J, Yang Z, An R, et al. lncRNA IGKJ2-MALLP2 suppresses LSCC proliferation, migration, invasion, and angiogenesis by sponging miR-1911-3p/p21. Cancer Sci. 2020;111(9):3245–57. https://doi.org/10.1111/cas.14559.
Shen Z, Hao W, Zhou C, et al. Long non-coding RNA AC0261662.–001 inhibits cell proliferation and migration in laryngeal squamous cell carcinoma by regulating the miR-24–3p/p27 axis. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-21659-5.
He G, Pang R, Han J, et al. TINCR inhibits the proliferation and invasion of laryngeal squamous cell carcinoma by regulating miR-210/BTG2. BMC Cancer. 2021;21(1):753. https://doi.org/10.1186/s12885-021-08513-0.
Wang JY, Yang Y, Ma Y, et al. Potential regulatory role of lncRNA-miRNA-mRNA axis in osteosarcoma. Biomed Pharmacother. 2020;121: 109627. https://doi.org/10.1016/j.biopha.2019.109627.
Xie ZZ, Xiao ZC, Song YX, Li W, Tan GL. Long non-coding RNA Dleu2 affects proliferation, migration and invasion ability of laryngeal carcinoma cells through triggering miR-16–1 pathway. Eur Rev Med Pharmacol Sci. 2018;22(7):1963–70.
Gundamaraju R, Lu W, Paul MK, et al. Autophagy and EMT in cancer and metastasis: who controls whom? Biochim Biophys Acta Mol Basis Dis. 2022;1868(9): 166431. https://doi.org/10.1016/j.bbadis.2022.166431.
Kisoda S, Mouri Y, Kitamura N, Yamamoto T, Miyoshi K, Kudo Y. The role of partial-EMT in the progression of head and neck squamous cell carcinoma. J Oral Biosci. 2022;64(2):176–82. https://doi.org/10.1016/j.job.2022.02.004.
Cui W, Meng W, Zhao L, Cao H, Chi W, Wang B. TGF-β-induced long non-coding RNA MIR155HG promotes the progression and EMT of laryngeal squamous cell carcinoma by regulating the miR-155-5p/SOX10 axis. Int J Oncol. 2019;54(6):2005–18. https://doi.org/10.3892/ijo.2019.4784.
Wu X, Tan Y, Tang X. Long noncoding RNA MALAT1 promotes laryngocarcinoma development by targeting miR-708-5p/BRD4 Axis to Regulate YAP1-mediated epithelial-mesenchymal transition. Biomed Res Int. 2022;2022:8093949. https://doi.org/10.1155/2022/8093949.
Wang H, Qian J, Xia X, Ye B. Long non-coding RNA OIP5-AS1 serves as an oncogene in laryngeal squamous cell carcinoma by regulating miR-204-5p/ZEB1 axis. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(11):2177–84. https://doi.org/10.1007/s00210-020-01811-7.
Song D, Wu S, Hu H, Dai X, Wang X. Long noncoding RNA MIAT regulates the process of laryngeal squamous cell carcinoma through regulation of miR-147a/BCOR. Arch Med Res. 2021;52(4):371–9. https://doi.org/10.1016/j.arcmed.2020.12.001.
Hao YR, Zhang DJ, Fu ZM, Guo YY, Guan GF. Long non-coding RNA ANRIL promotes proliferation, clonogenicity, invasion and migration of laryngeal squamous cell carcinoma by regulating miR-181a/Snai2 axis. Regen Ther. 2019;11:282–9. https://doi.org/10.1016/j.reth.2019.07.007.
Zhou JC, Zhang JJ, Ma W, Zhang W, Ke ZY, Ma LG. Anti-tumor effect of HOTAIR-miR-613-SNAI2 axis through suppressing EMT and drug resistance in laryngeal squamous cell carcinoma. RSC Adv. 2018;8(52):29879–89. https://doi.org/10.1039/c8ra04514c.
Wang N, Wang L, Pan X. Long non-coding RNA TRPM2-as promotes cell migration and invasion by serving as a ceRNA of miR-138 and Inducing SOX4-mediated emt in laryngeal squamous cell carcinoma. Cancer Manag Res. 2020;12:7805–12. https://doi.org/10.2147/CMAR.S265412.
Liu S, Duan W. Long noncoding RNA LINC00339 promotes laryngeal squamous cell carcinoma cell proliferation and invasion via sponging miR-145. J Cell Biochem. 2018. https://doi.org/10.1002/jcb.28110.10.1002/jcb.28110.
Cramer JD, Burtness B, Le QT, Ferris RL. The changing therapeutic landscape of head and neck cancer. Nat Rev Clin Oncol. 2019;16(11):669–83. https://doi.org/10.1038/s41571-019-0227-z.
Xue D, Pan ST, Zhou X, et al. Plumbagin Enhances the Anticancer Efficacy of Cisplatin by Increasing Intracellular ROS in Human Tongue Squamous Cell Carcinoma. Oxid Med Cell Longev. 2020;2020:5649174. https://doi.org/10.1155/2020/5649174.
Li L, Wang R, He S, et al. The identification of induction chemo-sensitivity genes of laryngeal squamous cell carcinoma and their clinical utilization. Eur Arch Otorhinolaryngol. 2018;275(11):2773–81. https://doi.org/10.1007/s00405-018-5134-x.
Li W, Chen Y, Nie X. Regulatory mechanisms of lncrnas and their target gene signaling pathways in laryngeal squamous cell carcinoma. Front Pharmacol. 2020;11:1140. https://doi.org/10.3389/fphar.2020.01140.
Kyurkchiyan SG, Popov TM, Mitev VI, Kaneva RP. The Role of miRNAs and lncRNAs in Laryngeal Squamous Cell Carcinoma-a Mini-Review. Folia Med. 2020;62(2):244–52. https://doi.org/10.3897/folmed.62.e49842.
Pointreau Y, Garaud P, Chapet S, et al. Randomized trial of induction chemotherapy with cisplatin and 5-fluorouracil with or without docetaxel for larynx preservation. J Natl Cancer Inst. 2009;101(7):498–506. https://doi.org/10.1093/jnci/djp007.
Bauer JA, Trask DK, Kumar B, et al. Reversal of cisplatin resistance with a BH3 mimetic, (-)-gossypol, in head and neck cancer cells: role of wild-type p53 and Bcl-xL. Mol Cancer Ther. 2005;4(7):1096–104. https://doi.org/10.1158/1535-7163.MCT-05-0081.
Yu J, Zhang W, Tang H, et al. Septin 2 accelerates the progression of biliary tract cancer and is negatively regulated by mir-140-5p. Gene. 2016;589(1):20–6. https://doi.org/10.1016/j.gene.2016.05.005.
Zheng Y, Li JX, Chen CJ, Lin ZY, Liu JX, Lin FJ. Extracellular vesicle-derived circ_SLC19A1 promotes prostate cancer cell growth and invasion through the miR-497/septin 2 pathway. Cell Biol Int. 2020;44(4):1037–45. https://doi.org/10.1002/cbin.11303.
Song K, Yu P, Zhang C, Yuan Z, Zhang H. The LncRNA FGD5-AS1/miR-497-5p axis regulates septin 2 (SEPT2) to accelerate cancer progression and increase cisplatin-resistance in laryngeal squamous cell carcinoma. Mol Carcinog. 2021;60(7):469–80. https://doi.org/10.1002/mc.23305.
Shen N, Duan X, Feng Y, Zhang J, Qiao X, Ding W. Long non-coding RNA HOXA11 antisense RNA upregulates spermatogenesis-associated serine-rich 2-like to enhance cisplatin resistance in laryngeal squamous cell carcinoma by suppressing microRNA-518a. Bioengineered. 2022;13(1):974–84. https://doi.org/10.1080/21655979.2021.2016038.
Greco A, Rizzo MI, De Virgilio A, et al. Cancer stem cells in laryngeal cancer: what we know. Eur Arch Otorhinolaryngol. 2016;273(11):3487–95. https://doi.org/10.1007/s00405-015-3837-9.
Lobb ML, Stern JA. Pattern of eyelid motion predictive of decision errors during drowsiness: oculomotor indices of altered states. Int J Neurosci. 1986;30(1–2):17–22. https://doi.org/10.3109/00207458608985650.
Yuan Z, Xiu C, Song K, et al. Long non-coding RNA AFAP1-AS1/miR-320a/RBPJ axis regulates laryngeal carcinoma cell stemness and chemoresistance. J Cell Mol Med. 2018;22(9):4253–62. https://doi.org/10.1111/jcmm.13707.
Yuan Z, Xiu C, Liu D, et al. Long noncoding RNA LINC-PINT regulates laryngeal carcinoma cell stemness and chemoresistance through miR-425-5p/PTCH1/SHH axis. J Cell Physiol. 2019;234(12):23111–22. https://doi.org/10.1002/jcp.28874.
Mijaljica D, Nazarko TY, Brumell JH, et al. Receptor protein complexes are in control of autophagy. Autophagy. 2012;8(11):1701–5. https://doi.org/10.4161/auto.21332.
Thorburn A, Thamm DH, Gustafson DL. Autophagy and cancer therapy. Mol Pharmacol. 2014;85(6):830–8. https://doi.org/10.1124/mol.114.091850.
Chen L, Xu Z, Zhao J, et al. H19/miR-107/HMGB1 axis sensitizes laryngeal squamous cell carcinoma to cisplatin by suppressing autophagy in vitro and in vivo. Cell Biol Int. 2021;45(3):674–85. https://doi.org/10.1002/cbin.11520.
Yang T, Li S, Liu J, Yin D, Yang X, Tang Q. lncRNA-NKILA/NF-κB feedback loop modulates laryngeal cancer cell proliferation, invasion, and radioresistance. Cancer Med. 2018;7(5):2048–63. https://doi.org/10.1002/cam4.1405.
Qu L, Jin M, Yang L, et al. Expression of long non-coding RNA HOXA11-AS is correlated with progression of laryngeal squamous cell carcinoma. Am J Transl Res. 2018;10(2):573–80.
Qiu H, Zhao DY, Yuan LM, Zhang G, Xie CH. Regulatory effects of WRAP53 on radiosensitivity of laryngeal squamous cell carcinoma cells. Asian Pac J Cancer Prev. 2015;16(7):2975–9. https://doi.org/10.7314/apjcp.2015.16.7.2975.
Xia P. Surface markers of cancer stem cells in solid tumors. Curr Stem Cell Res Ther. 2014;9(2):102–11. https://doi.org/10.2174/1574888x09666131217003709.
Odoux C, Fohrer H, Hoppo T, et al. A stochastic model for cancer stem cell origin in metastatic colon cancer. Cancer Res. 2008;68(17):6932–41. https://doi.org/10.1158/0008-5472.CAN-07-5779.
Karatas OF, Suer I, Yuceturk B, et al. The role of miR-145 in stem cell characteristics of human laryngeal squamous cell carcinoma Hep-2 cells. Tumour Biol. 2016;37(3):4183–92. https://doi.org/10.1007/s13277-015-4219-z.
Tang T, Shan G. DGCR5 promotes cancer stem cell-like properties of radioresistant laryngeal carcinoma cells by sponging miR-506 via Wnt pathway. J Cell Physiol. 2019;234(10):18423–31. https://doi.org/10.1002/jcp.28478.
Tang T, Shan G, Zeng F. Knockdown of DGCR5 enhances the radiosensitivity of human laryngeal carcinoma cells via inducing miR-195. J Cell Physiol. 2019;234(8):12918–25. https://doi.org/10.1002/jcp.27958.
Aziz MA, Yousef Z, Saleh AM, Mohammad S, Al KB. Towards personalized medicine of colorectal cancer. Crit Rev Oncol Hematol. 2017;118:70–8. https://doi.org/10.1016/j.critrevonc.2017.08.007.
Li X, Xu F, Meng Q, et al. Long noncoding RNA DLEU2 predicts a poor prognosis and enhances malignant properties in laryngeal squamous cell carcinoma through the miR-30c-5p/PIK3CD/Akt axis. Cell Death Dis. 2020;11(6):472. https://doi.org/10.1038/s41419-020-2581-2.
Xu S, Guo J, Zhang W. lncRNA PCAT19 promotes the proliferation of laryngocarcinoma cells via modulation of the miR-182/PDK4 axis. J Cell Biochem. 2019;120(8):12810–21. https://doi.org/10.1002/jcb.28552.
Zhu M, Zhang C, Zhou P, Chen S, Zheng H. LncRNA CASC15 upregulates cyclin D1 by downregulating miR-365 in laryngeal squamous cell carcinoma to promote cell proliferation. J Otolaryngol Head Neck Surg. 2022;51(1):8. https://doi.org/10.1186/s40463-022-00560-2.
Cui P, Dai X, Liu R, Cao H. LncRNA LINC00888 upregulation predicts a worse survival of laryngeal cancer patients and accelerates the growth and mobility of laryngeal cancer cells through regulation of miR-378g/TFRC. J Biochem Mol Toxicol. 2021;35(10): e22878. https://doi.org/10.1002/jbt.22878.
Xu Z, Xi K. LncRNA RGMB-AS1 promotes laryngeal squamous cell carcinoma cells progression via sponging miR-22/NLRP3 axis. Biomed Pharmacother. 2019;118: 109222. https://doi.org/10.1016/j.biopha.2019.109222.
Cui X, Yu H, Yu T, Xiao D, Wang X. LncRNA MNX1-AS1 drives aggressive laryngeal squamous cell carcinoma progression and serves as a ceRNA to target FoxM1 by sponging microRNA-370. Aging. 2021;13(7):9900–10.
Hui L, Wang J, Zhang J, Long J. lncRNA TMEM51-AS1 and RUSC1-AS1 function as ceRNAs for induction of laryngeal squamous cell carcinoma and prediction of prognosis. PeerJ. 2019;7: e7456. https://doi.org/10.7717/peerj.7456.
Zheng X, Dong S, Sun L, Xu J, Liu J, Hao R. LncRNA LINC00152 Promotes laryngeal cancer progression by sponging MiR-613. Open Med. 2020;15:240–8. https://doi.org/10.1515/med-2020-0035.
Li Y, Xu J, Guo YN, Yang BB. LncRNA SNHG20 promotes the development of laryngeal squamous cell carcinoma by regulating miR-140. Eur Rev Med Pharmacol Sci. 2019;23(8):3401–9.
Shi XY, Lin JJ, Ge XJ, Shi Y. LncRNA WTAPP1 promotes proliferation of laryngeal carcinoma cells through regulating microRNA-592. Eur Rev Med Pharmacol Sci. 2020;24(18):9532–40.
Xun W, Cen W, Dahai Y, et al. LncRNA miR143HG suppresses miR-21 through methylation to inhibit cell invasion and migration. Laryngoscope. 2020;130(11):E640–5. https://doi.org/10.1002/lary.28474.
Acknowledgements
We sincerely thank for the help from Dr. Chunyu Cao in the Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, and Prof. Xuelin Yang in Analysis and Testing Center, China Three Gorges University for writing suggestions.
Funding
This work was supported by open research fund from The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy of China Three Gorges University (grant no. 2022KZL2-01). In addition, it is funded by National Natural Science Foundation of China (grant no. 81602559), and sponsored by Research Fund for Excellent Dissertation of China Three Gorges University (2019SSPY107) and by Youth Science Fund Program of China Three Gorges University (grant no. 1115064).
Author information
Authors and Affiliations
Contributions
YL wrote and revised the manuscript. YW reviewed the literature, and approved the version to be published. ZZ participated in the revision and polishing of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there are no conflicts of interest.
Research involving human participants or animals
This article does not contain any studies with human participants or animals performed by any of the authors.
Consent for publication
Informed consent was obtained from all individual participants included in the study.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Lv, Y., Wang, Y. & Zhang, Z. Potentials of lncRNA–miRNA–mRNA networks as biomarkers for laryngeal squamous cell carcinoma. Human Cell 36, 76–97 (2023). https://doi.org/10.1007/s13577-022-00799-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13577-022-00799-x