[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Formulas for Poisson–Charlier, Hermite, Milne-Thomson and other type polynomials by their generating functions and p-adic integral approach

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

The main propose of this article is to investigate and modify Hermite type polynomials, Milne-Thomson type polynomials and Poisson–Charlier type polynomials by using generating functions and their functional equations. By using functional equations of the generating functions for these polynomials, we not only derive some identities and relations including the Bernoulli numbers and polynomials, the Euler numbers and polynomials, the Stirling numbers, the Poisson–Charlier polynomials, the Milne-Thomson polynomials and the Hermite polynomials, but also study some fundamental properties of these functions and polynomials. Moreover, we survey orthogonality properties of these polynomials. Finally, by applying another method which is related to p-adic integrals, we derive some formulas and combinatorial sums associated with some well-known numbers and polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayad, A., Simsek, Y., Srivastava, H.M.: Some array type polynomials associated with special numbers and polynomials. Appl. Math. Compute 244, 149–157 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Bretti, G., Ricci, P.E.: Multidimensional extensions of the Bernoulli and Appell polynomials. Taiwan. J. Math. 8, 415–428 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cakic, N.P., Milovanovic, G.V.: On generalized Stirling numbers and polynomials. Mathematica Balkanica 18, 241–248 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Campos, R.G., Marcellán, F.: Quadratures and integral transforms arising from generating functions. Appl. Math. Comput. 297, 8–18 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Comtet, L.: Advanced Combinatorics: The Art of Finite and Infinite Expansions (Translated from the French by J. W. Nienhuys). Reidel, Dordrecht and Boston (1974)

  6. Degroot, M.H., Schervish, M.J.: Probability and Statistics, 4th edn. Addison-Wesley, Boston (2012)

    Google Scholar 

  7. Dere, R., Simsek, Y.: Hermite base Bernoulli type polynomials on the umbral algebra. Russ. J. Math. Phys. 22(1), 1–5 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Djordjevic, G.B., Milovanovic, G.V.: Special classes of polynomials. University of Nis, Faculty of Technology Leskovac (2014)

    Google Scholar 

  9. Gautschi, W.: Orthogonal polynomials: computation and approximation. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  10. Jang, L.C., Kim, T.: A new approach to \(q\)-Euler numbers and polynomials. J. Concr. Appl. Math. 6, 159–168 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Khan, N., Usman, T., Choi, J.: A new class of generalized polynomials. Turk. J. Math. https://doi.org/10.3906/mat-1709-44 (to appear)

  12. Kim, D., Stanton, D., Zeng, J.: The combinatorics of the Al-Salam-Chihara-Charlier polynomials (preprint)

  13. Kim, D.S., Kim, T., Rim, S.-H., Lee, S.H.: Hermite polynomials and their applications associated with bernoulli and euler numbers. Discret. Dyn. Nat. Soc. 2012, 13 (2012). https://doi.org/10.1155/2012/974632

  14. Kim, D.S., Kim, T., Seo, J.: A note on Changhee numbers and polynomials. Adv. Stud. Theor. Phys. 7, 993–1003 (2013)

    Article  Google Scholar 

  15. Kim, D.S., Kim, T.: Daehee numbers and polynomials. Appl. Math. Sci. (Ruse) 7(120), 5969–5976 (2013)

    MathSciNet  Google Scholar 

  16. Kim, T.: \(q\)-Euler numbers and polynomials associated with \(p\)-adic \(q\)-integral and basic \(q\)-zeta function. Trend Math. Inf. Center Math. Sci. 9, 7–12 (2006)

    Google Scholar 

  17. Kim, T.: \(q\)-Volkenborn integration. Russ. J. Math. Phys. 19, 288–299 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Kim, T.: On the \(q\)-extension of Euler and Genocchi numbers. J. Math. Anal. Appl. 326(2), 1458–1465 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kim, T., Rim, S.-H., Simsek, Y., Kim, D.: On the analogs of Bernoulli and Euler numbers, related identities and zeta and \(l\)-functions. J. Korean Math. Soc. 45(2), 435–453 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric orthogonal polynomials and their \(q\)-analogues. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  21. Lorentz, G.G.: Bernstein Polynomials. Chelsea Pub. Comp, New York (1986)

    MATH  Google Scholar 

  22. Luo, Q.M., Srivastava, H.M.: Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind. Appl. Math. Compute 217, 5702–5728 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Milne-Thomson, L.M.: Two classes of generalized polynomials. Proc. Lond. Math. Soc. s2–35(1), 514–522 (1933)

  24. Milovanovic, G.V.: Chapter 23: Computer algorithms and software packages. In: Brezinski, C., Sameh, A. (eds.) Walter Gautschi: Selected Works and Commentaries, vol. 3, pp. 9–10. Birkhuser, Basel (2014)

    Chapter  Google Scholar 

  25. Milovanovic, G.V.: Chapter 11: Orthogonal polynomials on the real line. In: Brezinski, C., Sameh, A. (eds.) Walter Gautschi: Selected Works and Commentaries, vol. 2, pp. 3–16. Birkhuser, Basel (2014)

    Chapter  Google Scholar 

  26. Ozden, H., Simsek, Y.: Modification and unification of the Apostol-type numbers and polynomials and their applications. Appl. Math. Compute 235, 338–351 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Ozmen, N., Erkus-Duman, E.: On the Poisson-Charlier polynomials. Serdica Math. J. 41, 457–470 (2015)

    MathSciNet  Google Scholar 

  28. Rainville, E.D.: Special Functions. The Macmillan Company, New York (1960)

    MATH  Google Scholar 

  29. Riordan, J.: Introduction to Combinatorial Analysis. Princeton University Press, Princeton (1958)

    MATH  Google Scholar 

  30. Roman, S.: The Umbral Calculus. Dover Publ. Inc., New York (2005)

    MATH  Google Scholar 

  31. Schikhof, W.H.: Ultrametric Calculus: An Introduction to \(p\)-adic Analysis. Cambridge Studies in Advanced Mathematics 4. Cambridge University Press, Cambridge (1984)

  32. Simsek, Y.: Special functions related to Dedekind-type DC-sums and their applications. Russ. J. Math. Phys. 17(4), 495–508 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Simsek, Y.: Generating functions for generalized Stirling type numbers, array type polynomials, Eulerian type polynomials and their applications. Fixed Point Theory Appl. 2013(87), 1–28 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Simsek, Y.: Special numbers on analytic functions. Appl. Math. 5, 1091–1098 (2014)

    Article  Google Scholar 

  35. Simsek, Y.: Generating functions for the Bernstein type polynomıals: a new approach to derving identities and applications for the polynomials. Hacet. J. Math. Stat. 43(1), 1–14 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Simsek, Y.: Complete sum of products of \((h;q)\)-extension of Euler polynomials and numbers. J. Differ. Equ. Appl. 16, 1331–1348 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Simsek, Y.: Twisted \((h;q)\)-Bernoulli numbers and polynomials related to twisted \((h;q)\)-zeta function and L-function. J. Math. Anal. Appl. 324, 790–804 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Srivastava, H.M.: Some formulas for the Bernoulli and Euler polynomials at rational arguments. Math. Proc. Cambridge Philos. Soc. 129, 77–84 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Srivastava, H.M.: Some generalizations and basic (or \(q\)-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inform. Sci. 5, 390–444 (2011)

    MathSciNet  Google Scholar 

  40. Srivastava, H.M., Manocha, H.L.: A Treatise on Generating Functions. Wiley, New York (1984)

    MATH  Google Scholar 

  41. Srivastava, H.M., Choi, J.: Zeta and \(q\)-Zeta Functions and Associated Series and Integrals. Elsevier Science, Amsterdam, London and New York (2012)

    MATH  Google Scholar 

Download references

Acknowledgements

The present paper was supported by Scientific Research Project Administration of Akdeniz University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilmaz Simsek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simsek, Y. Formulas for Poisson–Charlier, Hermite, Milne-Thomson and other type polynomials by their generating functions and p-adic integral approach. RACSAM 113, 931–948 (2019). https://doi.org/10.1007/s13398-018-0528-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-018-0528-6

Keywords

Mathematics Subject Classification