Abstract
In a complex environment with multiple feasible paths, planning a globally optimal path and performing dynamic path planning for robots is challenging. Therefore, this paper proposed a new adaptive Differential Evolution algorithm combined with K-modes clustering, BP neural network, and other strategies (KBPDE) to overcome this issue. The proposed KBPDE algorithm applies a new population initialization strategy based on K-modes clustering and a two-population strategy to enhance the population diversity and prevent the algorithm from falling into local optima. A BP neural network model is developed to obtain the appropriate mutation scale factor F at each generation G. Based on the positional relationships among individuals in the current generation, a novel mutation strategy is presented. Finally, an adaptive population size strategy is introduced to raise the algorithm’s efficiency. In a complicated environment with several feasible paths, the experimental results demonstrate that KBPDE can obtain the globally optimal path in contrast to GA, DE, and the excellent versions of DE. In a partially known environment, the EKBPDE can plan the path successfully.
Similar content being viewed by others
Data availability
The data that support the findings of this study are available from the corresponding author, [author initials], upon reasonable request.
References
Hewawasam, H.; Ibrahim, M.Y.; Appuhamillage, G.K.: Past, present and future of path-planning algorithms for mobile robot navigation in dynamic environments. IEEE Open J. Ind. Electron. Soc. 3, 353–365 (2022)
Zhang, T.-W.; Xu, G.-H.; Zhan, X.-S.; Han, T.: A new hybrid algorithm for path planning of mobile robot. J. Supercomput. 78(3), 4158–4181 (2022)
Li, C.; Huang, X.; Ding, J.; Song, K.; Lu, S.: Global path planning based on a bidirectional alternating search a* algorithm for mobile robots. Comput. Ind. Eng. 168, 108123 (2022)
Xu, X.; Cai, P.; Ahmed, Z.; Yellapu, V.S.; Zhang, W.: Path planning and dynamic collision avoidance algorithm under colregs via deep reinforcement learning. Neurocomputing 468, 181–197 (2022)
Abdulsaheb, J.A.; Kadhim, D.J.: Classical and heuristic approaches for mobile robot path planning: A survey. Robotics 12(4), 93 (2023)
Gao, H.; Liu, D.; Hu, J.: A survey on path planning for mobile robot systems. In: 2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS), pp. 1176–1181 (2023). IEEE
Szczepanski, R.; Tarczewski, T.; Erwinski, K.: Energy efficient local path planning algorithm based on predictive artificial potential field. IEEE Access 10, 39729–39742 (2022)
Kanoon, Z.E.; Al-Araji, A.S.; Abdullah, M.N.: Enhancement of cell decomposition path-planning algorithm for autonomous mobile robot based on an intelligent hybrid optimization method. Int. J. Intel. Eng. Syst. 15(3), 161 (2022)
Kumar, S.; Sikander, A.: A modified probabilistic roadmap algorithm for efficient mobile robot path planning. Eng. Optim. 55, 1–19 (2022)
Xiangrui, X.; Jia, G.; Zhuguan, L.; Qianlin, L.; Hongwei, D.: Ddpg-based improved seeker optimization algorithm for robot path planning. In: 2022 2nd International Conference on Computer, Control and Robotics (ICCCR), pp. 27–31 (2022). IEEE
Sharma, V.; Tripathi, A.K.: A systematic review of meta-heuristic algorithms in iot based application. Array 14, 100164 (2022)
Kumar, S.; Sikander, A.: Optimum mobile robot path planning using improved artificial bee colony algorithm and evolutionary programming. Arab. J. Sci. Eng. 47(3), 3519–3539 (2022)
Chen, Z.; Xiong, G.; Liu, S.; Shen, Z.; Li, Y.: Path planning of mobile robot based on an improved genetic algorithm. In: 2022 IEEE 2nd International Conference on Digital Twins and Parallel Intelligence (DTPI), pp. 1–6 (2022). IEEE
Singh, J.; Fatima, S.; Chauhan, A.S.: Multi-objective travel route optimization using non-dominated sorting genetic algorithm. Int. J. Intel. Syst. Appl. Eng. 11(3), 785–794 (2023)
Yu, Z.; Si, Z.; Li, X.; Wang, D.; Song, H.: A novel hybrid particle swarm optimization algorithm for path planning of uavs. IEEE Internet Things J. 9(22), 22547–22558 (2022)
Hou, W.; Xiong, Z.; Wang, C.; Chen, H.: Enhanced ant colony algorithm with communication mechanism for mobile robot path planning. Robot. Autonom. Syst. 148, 103949 (2022)
Fu, J.; Lv, T.; Li, B.: Underwater submarine path planning based on artificial potential field ant colony algorithm and velocity obstacle method. Sensors 22(10), 3652 (2022)
Gao, P.; Zhou, L.; Zhao, X.; Shao, B.: Research on ship collision avoidance path planning based on modified potential field ant colony algorithm. Ocean Coast. Manag. 235, 106482 (2023)
Li, F.-F.; Du, Y.; Jia, K.-J.: Path planning and smoothing of mobile robot based on improved artificial fish swarm algorithm. Sci. Rep. 12(1), 659 (2022)
Cui, Y.; Hu, W.; Rahmani, A.: Fractional-order artificial bee colony algorithm with application in robot path planning. Eur. J. Oper. Res. 306(1), 47–64 (2023)
Ou, Y.; Yin, P.; Mo, L.: An improved grey wolf optimizer and its application in robot path planning. Biomimetics 8(1), 84 (2023)
Slim, M.; Rokbani, N.; Neji, B.; Terres, M.A.; Beyrouthy, T.: Inverse kinematic solver based on bat algorithm for robotic arm path planning. Robotics 12(2), 38 (2023)
Xin, G.; Shi, L.; Long, G.; Pan, W.; Li, Y.; Xu, J.: Mobile robot path planning with reformative bat algorithm. Plos One 17(11), 0276577 (2022)
Kundra, H.; Khan, W.; Malik, M.; Rane, K.P.; Neware, R.; Jain, V.: Quantum-inspired firefly algorithm integrated with cuckoo search for optimal path planning. Int. J. Mod. Phys. C 33(02), 2250018 (2022)
Chand, V.; Chaudhary, K.C.; Sharma, B.N.; Prasad, A.: Landmark aided robot path planning using stepping-ahead firefly algorithm. In: Pacific Asia Conference on Information Systems, p. 194 (2022). PACIS
Dai, Y.; Yu, J.; Zhang, C.; Zhan, B.; Zheng, X.: A novel whale optimization algorithm of path planning strategy for mobile robots. Appl. Intell. 53(9), 10843–10857 (2023)
Katoch, S.; Chauhan, S.S.; Kumar, V.: A review on genetic algorithm: past, present, and future. Multimed. Tools Appl. 80, 8091–8126 (2021)
Yang, X.-S.; He, X.: Bat algorithm: literature review and applications. Int. J. Bio-inspired Comput. 5(3), 141–149 (2013)
Mirjalili, S.; Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)
Storn, R.; Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341 (1997)
Ahmad, M.F.; Isa, N.A.M.; Lim, W.H.; Ang, K.M.: Differential evolution: a recent review based on state-of-the-art works. Alex. Eng. J. 61(5), 3831–3872 (2022)
Şenel, B.; Şenel, F.A.: Bandpass filter design using deep neural network and differential evolution algorithm. Arab. J. Sci. Eng. 47(11), 14343–14354 (2022)
Fan, C.; Wu, Y.; Hu, H.; Xiao, L.; Yi, L.; Ning, X.: A two-stage cooperative multi-objective evolutionary differential algorithm for combined heat and power economic emission dispatch. Arab. J. Sci. Eng. 48(5), 5889–5906 (2023)
Chakraborty, S.; Saha, A.K.; Ezugwu, A.E.; Agushaka, J.O.; Zitar, R.A.; Abualigah, L.: Differential evolution and its applications in image processing problems: a comprehensive review. Arch. Comput. Methods Eng. 30(2), 985–1040 (2023)
Deng, W.; Ni, H.; Liu, Y.; Chen, H.; Zhao, H.: An adaptive differential evolution algorithm based on belief space and generalized opposition-based learning for resource allocation. Appl. Soft Comput. 127, 109419 (2022)
Song, Y.; Zhao, G.; Zhang, B.; Chen, H.; Deng, W.; Deng, W.: An enhanced distributed differential evolution algorithm for portfolio optimization problems. Eng. Appl. Artif. Intel. 121, 106004 (2023)
Zhang, H.; Liu, T.; Ye, X.; Heidari, A.A.; Liang, G.; Chen, H.; Pan, Z.: Differential evolution-assisted salp swarm algorithm with chaotic structure for real-world problems. Eng. Comput. 39(3), 1735–1769 (2023)
Piotrowski, A.P.; Napiorkowski, J.J.; Piotrowska, A.E.: Particle swarm optimization or differential evolution-a comparison. Eng. Appl. Artif. Intel. 121, 106008 (2023)
Qin, A.K.; Huang, V.L.; Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evolut. Comput. 13(2), 398–417 (2008)
Brest, J.; Greiner, S.; Boskovic, B.; Mernik, M.; Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evolut. Comput. 10(6), 646–657 (2006)
Wang, Y.; Cai, Z.; Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. Evolut. Comput. 15(1), 55–66 (2011)
Zhang, J.; Sanderson, A.C.: Jade: adaptive differential evolution with optional external archive. IEEE Trans. Evolut. Comput. 13(5), 945–958 (2009)
Tanabe, R.; Fukunaga, A.: Success-history based parameter adaptation for differential evolution. In: 2013 IEEE Congress on Evolutionary Computation, pp. 71–78 (2013). IEEE
Tanabe, R.; Fukunaga, A.S.: Improving the search performance of shade using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665 (2014). IEEE
Mohamed, A.W.; Mohamed, A.K.: Adaptive guided differential evolution algorithm with novel mutation for numerical optimization. Int. J. Mach. Learn. Cybernet. 10, 253–277 (2019)
Nikolos, I.K.; Brintaki, A.N.: Coordinated uav path planning using differential evolution. In: Proceedings of the 2005 IEEE International Symposium On, Mediterrean Conference on Control and Automation Intelligent Control, 2005., pp. 549–556 (2005). IEEE
Zhang, X.; Chen, J.; Xin, B.; Fang, H.: Online path planning for uav using an improved differential evolution algorithm. IFAC Proceedings Volumes 44(1), 6349–6354 (2011)
Yang-guang, F.; Cheng-ping, Z.; Han-ping, H.: Research on differential evolution algorithm for path planning for unmanned aerial vehicle inocean environment. Acta armamentarii 33(3), 295 (2012)
Zamuda, A.; Sosa, J.D.H.: Differential evolution and underwater glider path planning applied to the short-term opportunistic sampling of dynamic mesoscale ocean structures. Appl. Soft Comput. 24, 95–108 (2014)
Li, Z.; Jia, J.; Cheng, M.; Cui, Z.: Solving path planning of uav based on modified multi-population differential evolution algorithm. In: Advances in Neural Networks–ISNN 2014: 11th International Symposium on Neural Networks, ISNN 2014, Hong Kong and Macao, China, November 28-December 1, 2014. Proceedings, pp. 602–610 (2014). Springer
Kok, K.Y.; Rajendran, P.: Differential-evolution control parameter optimization for unmanned aerial vehicle path planning. PloS one 11(3), 0150558 (2016)
Adhikari, D.; Kim, E.; Reza, H.: A fuzzy adaptive differential evolution for multi-objective 3d uav path optimization. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 2258–2265 (2017). IEEE
Zamuda, A.; Sosa, J.D.H.: Success history applied to expert system for underwater glider path planning using differential evolution. Expert Syst. Appl. 119, 155–170 (2019)
Yu, X.; Li, C.; Yen, G.G.: A knee-guided differential evolution algorithm for unmanned aerial vehicle path planning in disaster management. Appl. Soft Comput. 98, 106857 (2021)
Pant, M.; Zaheer, H.; Garcia-Hernandez, L.; Abraham, A.; et al.: Differential evolution: a review of more than two decades of research. Eng. Appl. Artif. Intel. 90, 103479 (2020)
Das, S.; Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evolut. Comput. 15(1), 4–31 (2010)
Khan, S.S.; Ahmad, A.: Cluster center initialization algorithm for k-modes clustering. Expert Syst. Appl. 40(18), 7444–7456 (2013)
Sapegin, A.; Meinel, C.: K-metamodes: Frequency-and ensemble-based distributed k-modes clustering for security analytics. In: 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 344–351 (2020). IEEE
Wang, W.; Zhu, Q.; Wang, Z.; Zhao, X.; Yang, Y.: Research on indoor positioning algorithm based on saga-bp neural network. IEEE Sensors J. 22(4), 3736–3744 (2021)
Liu, J.; Meng, L.: Integrating artificial bee colony algorithm and bp neural network for software aging prediction in iot environment. IEEE Access 7, 32941–32948 (2019)
Tu, J.; Yang, S.X.: Genetic algorithm based path planning for a mobile robot. In: 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), vol. 1, pp. 1221–1226 (2003). IEEE
Funding
This research was funded by the Guangxi Science and Technology Program(AB21120039).
Author information
Authors and Affiliations
Contributions
Yueyang Liu performed the study conception and design, the data analysis and the manuscript writing; Likun Hu performed the review and revision of manuscripts; Zhihuan Ma given some advice for this research.All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Ethical approval
No publicly available data or datasets were used in this study.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Liu, Y., Hu, L. & Ma, Z. A New Adaptive Differential Evolution Algorithm Fused with Multiple Strategies for Robot Path Planning. Arab J Sci Eng 49, 11907–11924 (2024). https://doi.org/10.1007/s13369-023-08380-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13369-023-08380-w