[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On Development and Performance Evaluation of Novel Odia Handwritten Digit Recognition Methods

  • Research Article - Special Issue - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Odia is an old and recognized regional language of India and is spoken, read and written by almost 90% people of Odisha state and an appreciable part of the population of neighbouring states. Unfortunately, very little work on Odia language processing (OLP) has been carried out and reported in standard literature. Accordingly, in this paper, a sincere attempt has been made on the recognition of handwritten Odia numerals, as a part of OLP, by using a standard database (Bhowmik et al. in Proceedings of 9th international conference on information technology (ICIT’06), Bhubaneswar, 18–21 December, pp 105–110, 2006) of ISI Kolkata. In this investigation, we have chosen six different transforms like the discrete Fourier transform (DFT), short-time Fourier transform, discrete cosine transform, discrete wavelet transform, S-transform (ST) and curvelet transform (CT) for feature extraction from handwritten numerals and principal component analysis for feature reduction. The standard four adaptive classifiers such as multilayered perceptron (MLP), four types of functional link artificial neural network (FLANN), radial basis function network and probabilistic neural network (PNN) are used to classify the handwritten Odia digits using the reduced extracted features from transform as inputs. The investigation made in this paper reveals that the RBF network with CT-based features and the power series FLANN with DFT features provide the best and the worst recognition performance for handwritten Odia numerals, respectively. Further, the first five best accuracy-based combined recognition systems are RBF-CT, RBF-ST, RBF-WT, PNN-CT and MLP-CT which offers percentage classification accuracy of 98.70, 96.22, 95.12, 95.10 and 93.60, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Impedovo, S.; Mangini, F.M.; Barbuzzi, D.: A novel prototype generation technique for handwriting digit recognition. Pattern Recognit. 47, 1002–1010 (2014)

    Article  Google Scholar 

  2. Wen, Y.; He, L.: A classifier for Bangla handwritten numeral recognition. Expert Syst. Appl. 39, 948–953 (2012)

    Article  Google Scholar 

  3. Cardoso, A.; Wichert, A.: Handwritten digit recognition using biologically inspired features. Neurocomputing 99, 575–580 (2013)

    Article  Google Scholar 

  4. Niu, X.-X.; Suen, C.Y.: A novel hybrid CNN–SVM classifier for recognizing handwritten digits. Pattern Recognit. 45, 1318–1325 (2012)

    Article  Google Scholar 

  5. Das, N.; Sarkar, R.; Basu, S.; Kundu, M.; Nasipuri, M.; Basu, D.K.: A genetic algorithm based region sampling for selection of local features in handwritten digit recognition application. Appl. Soft Comput. 12, 1592–1606 (2012)

    Article  Google Scholar 

  6. Chen, X.; Liu, X.; Jia, Y.: Discriminative structure selection method of Gaussian Mixture Models with its application to handwritten digit recognition. Neurocomputing 74, 954–961 (2011)

    Article  Google Scholar 

  7. Al Hadidi, M.; Rzouq, R.S.: Handwritten digits recognition using digital learning network, International conference on future computer supported education. IERI Procedia 2, 367–371 (2012)

    Article  Google Scholar 

  8. Awaidah, S.M.; Mahmoud, S.A.: A multiple feature/resolution scheme to Arabic (Indian) numerals recognition using hidden Markov models. Signal Process. 89, 1176–1184 (2009)

    Article  MATH  Google Scholar 

  9. Desai, A.A.: Gujarati handwritten numeral optical character reorganization through neural network. Pattern Recognit. 43, 2582–2589 (2010)

    Article  MATH  Google Scholar 

  10. Liu, C.-L.; Suen, C.Y.: A new benchmark on the recognition of handwritten Bangla and Farsi numeral characters. Pattern Recognit. 42, 3287–3295 (2009)

    Article  MATH  Google Scholar 

  11. Montazer, G.A.; Saremi, H.Q.; Khatibi, V.: A neuro-fuzzy inference engine for Farsi numeral characters recognition. Expert Syst. Appl. 37, 6327–6337 (2010)

    Article  Google Scholar 

  12. Patil, P.M.; Sontakke, T.R.: Rotation, scale and translation invariant handwritten Devanagari numeral character recognition using general fuzzy neural network. Pattern Recognit. 40, 2110–2117 (2007)

    Article  MATH  Google Scholar 

  13. Ye, Q.L.; Zhao, C.X.; Zhang, H.F.; Chen, X.B.: Recursive“concave-convex” Fisher Linear Discriminant with applications to face, handwritten digit and terrain recognition. Pattern Recognit. 45, 54–65 (2012)

    Article  MATH  Google Scholar 

  14. Mahmoud, S.: Recognition of writer-independent off-line handwritten Arabic (Indian) numerals using hidden Markov models. Signal Process. 88, 844–857 (2008)

    Article  MATH  Google Scholar 

  15. Das, N.; Reddy, J.M.; Sarkar, R.; Basu, S.; Kundu, M.; Nasipuri, M.; Basu, D.K.: A statistical-topological feature combination for recognition of handwritten Numerals. Appl. Soft Comput. 12, 2486–2495 (2012)

    Article  Google Scholar 

  16. Yanga, L.; Suen, C.Y.; Bui, T.D.; Zhang, P.: Discrimination of similar handwritten numerals based on invariant curvature features. Pattern Recognit. 38, 947–963 (2005)

    Article  Google Scholar 

  17. Bhowmik,T.K.; Parui, S.K.; Bhattacharya, U.; Shaw, B.: An HMM based recognition scheme for handwritten Oriya numerals. In: Proceedings of 9th International Conference on Information Technology (ICIT’06), Bhubaneswar, 18–21 December 2006, pp. 105–110.

  18. Lauera, F.; Suenb, C.Y.; Blocha, G.: A trainable feature extractor for handwritten digit recognition. Pattern Recognit. 40, 1816–1824 (2007)

    Article  Google Scholar 

  19. Zhang, P.; Bui, T.D.; Suen, C.Y.: A novel cascade ensemble classifier system with a high recognition performance on handwritten digits. Pattern Recognit. 40, 3415–3429 (2007)

    Article  MATH  Google Scholar 

  20. Wen, Y.; Lub, Y.; Shia, P.: Handwritten Bangla numeral recognition system and its application to postal automation. Pattern Recognit. 40, 99–107 (2007)

    Article  Google Scholar 

  21. Hanmandlu, M.; Ramana Murthy, O.V.: Fuzzy model based recognition of handwritten numerals. Pattern Recognit. 40, 1840–1854 (2007)

    Article  MATH  Google Scholar 

  22. El qacimy, B.; Ait kerroum, M.; Hammouch, A.: Handwritten digit recognition based on DCT features and SVM classifier. In: Proceedings of 2nd World Conference on Complex Systems (WCCS), 10–12 November 2014, pp. 13–16.

  23. Babu, U.R.; Venkateswarlu, Y.; Chintha, A.K.: Handwritten digit recognition using k-nearest neighbour classifier. In: Proceedings of World Congress on Computing and Communication Technologies(WCCCT), 27 February–1 March 2014, pp. 60–65.

  24. Xue, Y.; Jin, L.: A new rotation feature for single tri-axial accelerometer based 3D spatial handwritten digit recognition. In: Proceedings of IEEE 20th International Conference on Pattern Recognition(ICPR), 23–26 August, 2010, pp. 4218–4221.

  25. Sadri, J.; Yeganehzad, M.R.; Sahgi, J.: A novel comprehensive database for offline Persian handwriting recognition. Pattern Recognit. 60, 378–393 (2016)

    Article  Google Scholar 

  26. Boukharouba, A.; Bennia, A.: Novel feature extraction technique for the recognition of handwritten digits. Appl. Comput. Inform. 13, 19–26 (2017)

    Article  Google Scholar 

  27. Shivakumara, P.; Raghavendra, R.; Qin, L.; Raja, K.B.; Lu, T.; Pal, U.: A new multi-modal approach to bib number/text detection and recognition in Marathon images. Pattern Recognit. 61, 479–491 (2017)

    Article  Google Scholar 

  28. Chen, Z.; Wang, S.; Fang, G.; Wang, J.: Ionograms denoising via curvelet transform. Adv. Space Res. 52, 1289–1296 (2013)

    Article  Google Scholar 

  29. Xinchun, W.; Kaihua, Y.; Yuming, L.; Qing, Y.: Palmprint recognition based on curvelet transform decision fusion. Procedia Eng. 23, 303–309 (2011)

    Article  Google Scholar 

  30. Tang, M.; Chen, F.: Facial expression recognition and its application based on curvelet transform and PSO-SVM. Optik 124, 5401–5406 (2013)

    Article  Google Scholar 

  31. Eltoukhy, M.M.; Faye, I.; Samir, B.B.: Breast cancer diagnosis in digital mammogram using multiscale curvelet Transform. Comput. Med. Imaging Graph. 34, 269–276 (2010)

    Article  Google Scholar 

  32. Li, Y.C.; Wang, Y.; Xiao, R.; Yang, Qiu: Curvelet based image compression via core vector machine. Optik 124, 4859–4866 (2013)

    Article  Google Scholar 

  33. Starck, J.-L.; Candès, E.J.; Donoho, D.L.: The curvelet transform for image denoising. IEEE Trans. Image Process. 11(6), 670–684 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jing-Jing, Z.; Xing-Yao, Y.; Guang-Zhi, Z.; Guo-Hu, W.; Zuo-Sheng, Z.: The surface wave suppression using the second generation Curvelet transform. Appl. Geophys. 7(4), 325–335 (2010)

    Article  Google Scholar 

  35. Nigam, S.; Khare, A.: Multifont Oriya character recognition using curvelet transform. In: Proceedings of International Conference ICISIL 2011, 9–11 March 2011, Patiala, vol. 139, pp. 150–156, Springer, Berlin

  36. Zhang, Y.; Li, T.; Li, Q.: Defect detection for tire laser shearography image using curvelet transform based edge detector. Opt. Laser Technol. 47, 64–71 (2013)

    Article  Google Scholar 

  37. Biswas, A.; Creswell, H.P.: Curvelet transform to study scale-dependent anisotropic soil spatial variation. Geoderma 213, 589–599 (2014)

    Article  Google Scholar 

  38. Gonzalez, R.C.; Woods, R.E.: Digital Image Processing, 2nd edn. PHI, New Delhi (2002)

    Google Scholar 

  39. Proakis, J.G.; Manolakis, D.G.: Digital Signal Processing, 4th edn. Pearson Education, New Delhi (2007)

  40. Dabbaghchian, S.; Ghaemmaghami, M.P.; Aghagolzadeh, A.: Feature extraction using discrete cosine transform and discrimination power analysis with a face recognition technology. Pattern Recognit. 23(4), 1431–1440 (2010)

    Article  MATH  Google Scholar 

  41. Lin, H.-Y.; Liang, S.-Y.; Ho, Y.-L.; Lin, Y.-H.; Ma, H.-P.: Discrete wavelet transform based noise removal and feature extraction for ECG signals. IRBM 35(6), 351–361 (2014)

    Article  Google Scholar 

  42. Dash, P.K.; Panigrahi, B.K.; Panda, G.: Power quality analysis using S-transform. IEEE Trans. Power Deliv. 18(2), 406–411 (2003)

    Article  Google Scholar 

  43. Qiu, Z.; Lee, C.-M.; Xu, Z.H.; Sui, L.N.: A multi-resolution filtered-x LMS algorithm based on discrete wavelet transform for active noise control. Mech. Syst. Signal Process. 66–67, 458–469 (2016)

    Article  Google Scholar 

  44. Protić, M.; Shamshirband, S.; Petković, D.; Abbasi, A.; Kiah, L.; Kiah, L.M.; Unar, J.A.; Živković, L.; Raos, M.: Forecasting of consumers heat load in district heating systems using the support vector machine with a discrete wavelet transform algorithm. Energy 87(1), 343–351 (2015)

    Article  Google Scholar 

  45. Vijayarajan, R.; Muttan, S.: Discrete wavelet transform based principal component averaging fusion for medical images. AEU Int. J. Electron. Commun. 69(6), 896–902 (2015)

    Article  Google Scholar 

  46. Szymczyk, P.; Szymczyk, M.: Non-destructive building investigation through analysis of GPR signal by S-transform. Autom. Constr. 55, 35–46 (2015)

    Article  Google Scholar 

  47. Radad, M.; Gholami, A.; Siahkoohi, H.R.: S-transform with maximum energy concentration: application to non-stationary seismic deconvolution. J. Appl. Geophys. 118, 155–166 (2015)

    Article  Google Scholar 

  48. Ma, J.; Jiang, J.: Analysis and design of modified window shapes for S-transform to improve time-frequency localization. Mech. Syst. Signal Process. 58–59, 271–284 (2015)

    Article  Google Scholar 

  49. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  50. Patra, J.C.; Panda, G.; Baliarsingh, R.: Artificial neural network based nonlinearity estimation of pressure sensors. IEEE Trans. Instrum. Meas. 43(6), 874–881 (1994)

    Article  Google Scholar 

  51. Zhao, H.; Zhang, J.: Adaptively combined FIR and Functional link artificial neural network equalizer for nonlinear communication channel. IEEE Trans. Neural Netw. 20(4), 665–674 (2009)

  52. Majhi, R.; Panda, G.; Sahoo, G.: Efficient prediction of exchange rates with low complexity artificial neural network models. Expert Syst. Appl. 36(1), 181–189 (2009)

    Article  Google Scholar 

  53. Orhan, U.; Hekim, M.; Ozer, M.: EEG signals classification using K-means clustering and a multilayer perceptron neural network model. Expert Syst. Appl. 38(10), 13475–13481 (2011)

    Article  Google Scholar 

  54. Hwang, Y.-S.; Bang, S.-Y.: An efficient method to construct a radial basis function neural network classifier. Neural Netw. 10(8), 1495–1503 (1997)

    Article  Google Scholar 

  55. Alweshah, M.; Abdullah, S.: Hybridizing firefly algorithms with a probabilistic neural network for solving classification problems. Appl. Soft Comput. J. 35, 513–524 (2015)

    Article  Google Scholar 

  56. Patra, J.C.; Pal, R.N.; Chatterji, B.N.; Panda, G.: Identification of nonlinear dynamic systems using functional link artificial neural networks. IEEE Trans. Syst. Man Cybernet. Part B Cybernet. 29(2), 254–262 (1999)

    Article  Google Scholar 

  57. Patra, J.C.; Kot, A.C.: Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks. IEEE Trans. Syst. Man Cybernet. Part B Cybernet. 32(4), 505–511 (2002)

    Article  Google Scholar 

  58. Patra, J.C.; Chin, W.C.; Meher, P.K.; Chakraborty, G.: Legendre-FLANN based nonlinear channel equalization in wireless communication system. In: Proceedings of IEEE International conference on Systems, Man and Cybernetics (SMC 2008), pp. 1826–1831.

  59. Di, H.; Gao, D.: Gray-level transformation and Canny edge detection for 3D seismic discontinuity enhancement. Comput. Geosci. 72, 12–20 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babita Majhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majhi, B., Pujari, P. On Development and Performance Evaluation of Novel Odia Handwritten Digit Recognition Methods. Arab J Sci Eng 43, 3887–3901 (2018). https://doi.org/10.1007/s13369-017-2652-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2652-6

Keywords

Navigation