Abstract
In this study, Fengyun-3D (FY-3D) MicroWave Radiation Imager (MWRI) radiance data were directly assimilated into the Global/Regional Assimilation and PrEdiction System (GRAPES) four-dimensional variational (4DVar) system. Quality control procedures were developed for MWRI applications by using algorithms from similar microwave instruments. Compared with the FY-3C MWRI, the bias of FY-3D MWRI observations did not show a clear node-dependent difference from the numerical weather prediction background simulation. A conventional bias correction approach can therefore be used to remove systematic biases before the assimilation of data. After assimilating the MWRI radiance data into GRAPES, the geopotential height and humidity analysis fields were improved relative to the control experiment. There was a positive impact on the location of the subtropical high, which led to improvements in forecasts of the track of Typhoon Shanshan.
Similar content being viewed by others
References
Alishouse, J. C., S. A. Snyder, J. Vongsathorn, et al., 1990: Determination of oceanic total precipitable water from the SSM/I. IEEE Trans. Geosci. Remote Sens., 28, 811–816, doi: https://doi.org/10.1109/36.58967.
Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674–701, doi: https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.
Bao, Y. S., F. Mao, J. Z. Min, et al., 2014: Retrieval of bare soil moisture from FY-3B/MWRI data. Remote Sens. Land Resour., 26, 131–137, doi: https://doi.org/10.6046/gtzyyg.2014.04.21. (in Chinese)
Bettenhausen, M. H., C. K. Smith, R. M. Bevilacqua, et al., 2006: A nonlinear optimization algorithm for WindSat wind vector retrievals. IEEE Trans. Geosci. Remote Sens., 44, 597–610, doi: https://doi.org/10.1109/TGRS.2005.862504.
Bouttier, F., and P. Courtier, 2002: Data assimilation concepts and methods March 1999. Proceedings of ECMWF Meteorological Training Course Lecture Series, ECMWF, Bracknell, 1–58
Chen, D. H., J. S. Xue, X. S. Yang, et al., 2008: New generation of multi-scale NWP system (GRAPES): General scientific design. Chinese Sci. Bull., 53, 3433–3445, doi: https://doi.org/10.1007/s11434-008-0494-z.
Chen, H., and Y. Q. Jin, 2012: In-orbit intercalibration of FY-3B/MWRI and applications for monitoring drought and flooding. J. Remote Sens., 16, 1024–1034, doi: https://doi.org/10.11834/jrs.20121299. (in Chinese)
Chen, L. S., 1979: On the causal analysis of typhoon tracks which turning direction westward suddenly over the sea area near the eastern China. Chinese J. Atmos. Sci., 3, 289–298, doi: https://doi.org/10.3878/j.issn.1006-9895.1979.03.11. (in Chinese)
Chen, X. M., Q. J. Liu, and J. C. Zhang, 2007: A numerical simulation study on microphysical structure and cloud seeding in cloud system of Qilian Mountain Region. Meteor. Mon., 33, 33–43, doi: https://doi.org/10.9969/j.issn.1000-0526.2007.07.004. (in Chinese)
Connor, L. N., and P. S. Chang, 2000: Ocean surface wind retrievals using the TRMM microwave imager. IEEE Trans. Geosci. Remote Sens., 38, 2009–2016, doi: https://doi.org/10.1109/36.851782.
Dai, Y. J., X. B. Zeng, R. E. Dickinson, et al., 2003: The common land model. Bull. Amer. Meteor. Soc., 84, 1013–1024, doi: https://doi.org/10.1175/BAMS-84-8-1013.
Dou, F. L., D. W. An, and J. R. Li, 2014: Sea surface wind speed retrieval based on FY-3B Microwave Imager. Remote Sens. Technol. Appl., 29, 984–992. (in Chinese)
Feng, C. C., and H. Zhao, 2015: Identification of radio-frequency interference signal from FY-3B microwave radiation imager over ocean. J. Remote Sens., 19, 465–475, doi: https://doi.org/10.11834/jrs.20154056. (in Chinese)
Ferraro, R. R., F. Z. Weng, N. C. Grody, et al., 1996: An eight-year (1987–1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements. Bull. Amer. Meteor. Soc., 77, 891–906, doi: https://doi.org/10.1175/1520-0477(1996)077<0891:AEYTSO>2.0.CO;2.
Gaiser, P. W., K. M. St Germain, E. M. Twarog, et al., 2004: The WindSat spaceborne Polarimetric microwave radiometer: Sensor description and early orbit performance. IEEE Trans. Geosci. Remote Sens., 42, 2347–2361, doi: https://doi.org/10.1109/TGRS.2004.836867.
Geer, A. J., K. Lonitz, P. Weston, et al., 2018: All-sky satellite data assimilation at operational weather forecasting centres. Quart. J. Roy. Meteor. Soc., 144, 1191–1217, doi: https://doi.org/10.1002/qj.3202.
Giorgi, F., Y. Huang, K. Nishizawa, et al., 1999: A seasonal cycle simulation over eastern Asia and its sensitivity to radiative transfer and surface processes. J. Geophys. Res. Atmos., 104, 6403–6423, doi: https://doi.org/10.1029/1998JD200052.
Grody, N. C., and R. R. Ferraro, 1992: A comparison of passive microwave rainfall retrieval methods. Proceeding of the 6th Conference on Meteorology and Oceanography, American Meteorological Society, Atlanta, 60–65.
Guo, L., H. Sheng, J. Wang, et al., 2017: Retrieving near sea surface air temperature by AMSR2 radiometer. Adv. Mar. Sci., 35, 124–130, doi: https://doi.org/10.3969/j.issn.1671-6647.2017.01.013. (in Chinese)
Han, W., and N. Bormann, 2016: Constrained adaptive bias correction for satellite radiance assimilation in the ECMWF 4D-Var system. Technical Memorandum No. 783, ECMWF, Shinfield Park, Reading, 26 pp.
Hargens, U., C. Simmer, and E. Ruprecht, 1992: Remote sensing of cloud liquid water during ICE’89. Proceedings of Specialist Meeting on Microwave Radiometry and Remote Sensing Applications, IEEE, Boulder, Colorado, 27–31.
Harris, B. A., and G. Kelly, 2001: A satellite radiance-bias correction scheme for data assimilation. Quart. J. Roy. Meteor. Soc., 127, 1453–1468, doi: https://doi.org/10.1002/qj.49712757418.
Hollinger, J. P., J. L. Peirce, and G. A. Poe, 1990: SSM/I instrument evaluation. IEEE Trans. Geosci. Remote Sens., 28, 781–790, doi: https://doi.org/10.1109/36.58964.
Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339, doi: https://doi.org/10.1175/1520-0493(1966)124<2322:NBLVDI>2.0.CO;2.
Huang, W., Y. L. Hao, J. Wang, et al., 2013: Brightness temperature data comparison and evaluation of FY-3B microwave radiation imager with AMSR-E. Period. Ocean Univ. China, 43, 99–111, doi: https://doi.org/10.16441/j.ckki.hdxb.2013.11.015. (in Chinese)
JAXA, 2013: GCOM-W1 “SHIZUKU” Data Users Handbook, Japan Aerospace Exploration Agency. Tsukuba, Japan, 125 pp. Available online at https://gportal.jaxa.jp/gpr/assets/mng_up-load/GCOM-W/GCOM-W1_SHIZUKU_Data_Users_Hand-book_EN.pdf. Accessed on 19 August 2020.
Kawanishi, T., T. Sezai, Y. Ito, et al., 2003: The advanced microwave scanning radiometer for the Earth observing system (AMSR-E), NASDA’S contribution to the EOS for global energy and water cycle studies. IEEE Trans. Geosci. Remote Sens., 41, 184–194, doi: https://doi.org/10.1109/TGRS.2002.808331.
Kazumori, M., Q. H. Liu, R. Treadon, et al., 2008: Impact study of AMSR-E radiances in the NCEP global data assimilation system. Mon. Wea. Rev., 136, 541–559, doi: https://doi.org/10.1175/2007MWR2147.1.
Kazumori, M., A. J. Geer, and S. J. English, 2014: Effects of all-sky assimilation of GCOM-W1/AMSR2 radiances in the ECMWF system. Technical Memo 732, ECMWF, Reading, 1–34.
Krasnopolsky, V. M., L. C. Breaker, and W. H. Gemmill, 1995: A neural network as a nonlinear transfer function model for retrieving surface wind speeds from the special sensor microwave imager. J. Geophys. Res. Oceans, 100, 11,033–11,045, doi: https://doi.org/10.1029/95JC00857.
Kummerow, C., J. Simpson, O. Thiele, et al., 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 1965–1982, doi: https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.
Kuria, D., and T. Koike, 2011: Convective cloud discrimination using multi-frequency microwave signatures of the AMSR-E sensor: Evaluation over the Tibetan Plateau. Int. J. Remote Sens., 32, 3451–3460, doi: https://doi.org/10.1080/01431161003749451.
Lawrence, H., F. Carminati, W. Bell, et al., 2017: An Evaluation of FY-3C MWRI and Assessment of the Long-term Quality of FY-3C MWHS-2 at ECMWF and the Met Office. ECMWF Technical Memoranda 798, ECMWF, doi: https://doi.org/10.21957/lhuph6fb3.
Lee, D.-K., and M.-S. Suh, 2000: Ten-year East Asian summer monsoon simulation using a regional climate model (RegCM2). J. Geophys. Res. Atmos., 105, 29565–29577, doi: https://doi.org/10.1029/2000JD900438.
Li, L., E. G. Njoku, E. Im, et al., 2004: A preliminary survey of radio-frequency interference over the US in Aqua AMSR-E data. IEEE Trans. Geosci. Remote Sens., 42, 380–390, doi: https://doi.org/10.1109/TGRS.2003.817195.
Li, X. Q., H. Yang, R. You, et al., 2012: Remote sensing Typhoon Songda’s rainfall structure based on Microwave Radiation Imager of FY-3B satellite. Chinese J. Geophys., 55, 2843–2853. (in Chinese)
Liu, K., Q. Y. Chen, and J. Sun, 2015: Modification of cumulus convection and planetary boundary layer schemes in the GRAPES global model. J. Meteor. Res., 29, 806–822, doi: https://doi.org/10.1007/s13351-015-5043-5.
Liu, Q. J., Z. J. Hu, and X. J. Zhou, 2003: Explicit cloud schemes of HLAFS and simulation of heavy rainfall and clouds. Part I: Explicit cloud schemes. J. Appl. Meteor. Sci., 14, 60–67, doi: https://doi.org/10.3969/j.issn.1001-7313.2003.z1.008. (in Chinese)
Liu, Z. Q., and F. Rabier, 2002: The interaction between model resolution, observation resolution and observation density in data assimilation: A one-dimensional study. Quart. J. Roy. Meteor. Soc., 128, 1367–1386, doi: https://doi.org/10.1256/003590002320373337.
Liu, Z. Q., F. Y. Zhang, X. B. Wu, et al., 2007: A regional ATOVS radiance-bias correction scheme for rediance assimilation. Acta Meteor. Sinica, 65, 113–123, doi: https://doi.org/10.3321/j.issn:0577-6619.2007.01.011. (in Chinese)
Liu, Z. Q., C. S. Schwartz, C. Snyder, et al., 2012: Impact of assimilating AMSU-A radiances on forecasts of 2008 Atlantic tropical cyclones initialized with a limited-area Ensemble Kalman Filter. Mon. Wea. Rev., 140, 4017–4034, doi: https://doi.org/10.1175/MWR-D-12-00083.1.
Ma, Z. S., Q. J. Liu, C. F. Zhao, et al., 2018: Application and evaluation of an explicit prognostic cloud-cover scheme in GRAPES global forecast system. J. Adv. Model. Earth Syst., 10, 652–667, doi: https://doi.org/10.1002/2017MS001234.
Madrid, C. R., 1978: The Nimbus 7 User’s Guide. NAS5-23740, NASA Goddard Space Flight Center, Greenbelt.
Moncet, J.-L., P. Liang, J. F. Galantowicz, et al., 2011: Land surface microwave emissivities derived from AMSR-E and MODIS measurements with advanced quality control. J. Geophys. Res. Atmos., 116, D16104, doi: https://doi.org/10.1029/2010JD015429.
Morcrette, J.-J., H. W. Barker, J. N. S. Cole, et al., 2008: Impact of a new radiation package, McRad, in the ECMWF integrated forecasting system. Mon. Wea. Rev., 136, 4773–4798, doi: https://doi.org/10.1175/2008MWR2363.1.
Nielsen-Englyst, P., J. L. Hoyer, L. T. Pedersen, et al., 2018: Optimal estimation of sea surface temperature from AMSR-E. Remote Sens., 10, 229, doi: https://doi.org/10.3390/rs10020229.
Oki, T., K. Imaoka, and M. Kachi, 2010: AMSR instruments on GCOM-W1/2: Concepts and applications. Proceedings of 2010 IEEE International Geoscience and Remote Sensing Symposium, IEEE, Honolulu, HI, 1363–1366, doi: https://doi.org/10.1109/IGARSS.2010.5650001.
Pan, H.-L., and W. S. Wu, 1995: Implementing a mass flux convective parameterization package for the NMC medium-range forecast model. NMC Office Note 409, NMC, Washington, DC, 1–40.
Peng, L. C., W. B. Li, and H. Z. Liu, 2011: Estimation of the soil moisture using FY-3A/MWRI data over semiarid areas. Acta Sci. Nat. Univ. Pekin., 47, 797–804, doi: https://doi.org/10.13209/j.0479-8023.2011.111. (in Chinese)
Pincus, R., H. W. Barker, and J.-J. Morcrette, 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J. Geophys. Res. Atmos., 108, 4376, doi: https://doi.org/10.1029/2002JD003322.
Spreen, G., L. Kaleschke, and G. Heygster, 2008: Sea ice remote sensing using AMSR-E 89-GHz channels. J. Geophys. Res. Oceans, 113, C02S03, doi: https://doi.org/10.1029/2005JC003384.
Su, J., G. H. Hao, X. X. Ye, et al., 2013: The experiment and validation of sea ice concentration AMSR-E retrieval algorithm in polar region. J. Remote Sens., 17, 495–513, doi: https://doi.org/10.11834/jrs.20132043. (in Chinese)
Sun, L. E., J. Wang, T. W. Cui, et al., 2012: Statistical retrieval algorithms of the sea surface temperature (SST) and wind speed (SSW) for FY-3B Microwave Radiometer Imager (MWRI). J. Remote Sens., 16, 1262–1271, doi: https://doi.org/10.11834/jrs.20121323. (in Chinese)
Sun, N. H., and F. Z. Weng, 2008: Evaluation of special sensor microwave imager/sounder (SSMIS) environmental data records. IEEE Trans. Geosci. Remote Sens., 46, 1006–1016, doi: https://doi.org/10.1109/TGRS.2008.917368.
Tang, F., and X. L. Zou, 2017: Liquid water path retrieval using the lowest frequency channels of FengYun-3C microwave radiation imager (MWRI). J. Meteor. Res., 31, 1109–1122, doi: https://doi.org/10.1007/s13351-017-7012-7.
Tang, F., and X. L. Zou, 2018: Diurnal variation of liquid water path derived from two polar-orbiting FengYun-3 MicroWave Radiation Imagers. Geophys. Res. Lett., 45, 6281–6288, doi: https://doi.org/10.1029/2018GL077857.
Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 221, 3040–3061, doi: https://doi.org/10.1175/15200-0493(1993)121<3040:ROCILS>2.0.CO;2.
Wang, J. C., H. J. Lu, W. Han, et al., 2017: Improvements and performances of the operational GRAPES_GFS 3DVar system. J. Appl. Meteor. Sci., 28, 11–24, doi: https://doi.org/10.11898/1001-7313.20170102. (in Chinese)
Weng, F. Z., N. C. Grody, R. Ferraro, et al., 1997: Cloud liquid water climatology from the special sensor microwave/imager. J. Climate, 10, 1086–1098, doi: https://doi.org/10.1175/1520-0442(1997)010<1086:clwcft>2.0.co;2.
Wu, Q., L. Yang, and H. Yang, 2012: Image quality evaluation of MWRI from FY-3B satellite. Remote Sens. Technol. Appl., 1, 542–548, doi: https://doi.org/10.11873/j.issn.1004-0323.2012.4.542. (in Chinese)
Wu, Y., and F. Z. Weng, 2011: Detection and correction of AM-SR-E radio-frequency interference. Acta Meteor. Sinica, 25, 669–681, doi: https://doi.org/10.1007/s13351-011-0510-0.
Xie, X. X., S. L. Wu, H. X. Xu, et al., 2019: Ascending-descending bias correction of microwave radiation imager on board FengYun-3C. IEEE Trans. Geosci. Remote Sens., 57, 3126–3134, doi: https://doi.org/10.1109/TGRS.2018.2881094.
Xue, J. S., and D. H. Chen, 2008: Scientific Design and Application of Numerical Prediction System GRAPES. Science Press, Beijing, 383 pp. (in Chinese)
Xue, J. S., S. Y. Zhuang, G. F. Zhu, et al., 2008: Scientific design and preliminary results of three-dimensional variational data assimilation system of GRAPES. Chinese Sci. Bull., 53, 3446–3457, doi: https://doi.org/10.1007/s11434-008-0416-0.
Yang, C., Z. Q. Liu, J. Bresch, et al., 2016: AMSR2 all-sky radiance assimilation and its impact on the analysis and forecast of Hurricane Sandy with a limited-area data assimilation system. Tellus A, 38, 30917, doi: https://doi.org/10.3402/tellusa.v68.30917.
Yang, C., J. Z. Min, and Z. Q. Liu, 2017: The impact of AMSR2 radiance data assimilation on the analysis and forecast of Typhoon Son-Tinh. Chinese J. Atmos. Sci., 41, 372–384, doi: https://doi.org/10.3878/j.issn.1006-9895.1608.16127. (in Chinese)
Yang, H., X. Q. Li, R. You, et al., 2013: Environmental data records from FengYun-3B microwave radiation imager. Adv. Meteor. Sci. Technol., 3, 136–143. (in Chinese)
Yin, H. G., Q. Wu, S. Y. Gu, et al., 2016: Analysis of rainfall measurement power in the FY-3(03) rain measurement satellite. Adv. Meteor. Sci. Technol., 3, 55–61. (in Chinese)
Yu, Z. W., J. W. Liu, J. P. Huang, et al., 2017: Assimilation experiment of AMSR2 microwave imaging data and its influence on typhoon forecasting. Meteor. Hydrol. Mar. Instrum., 34, 1–8. (in Chinese)
Yu, Z. W., J. W. Liu, Z. Zhong, et al., 2018: Assimilation experiment of AMSR2 microwave imaging data under cloudy and rainy condition and its application on the forecast of a typhoon process. J. Meteor. Sci., 38, 203–211. (in Chinese)
Zhang, L., Y. Z. Liu, Y. Liu, et al., 2019a: The operational global four-dimensional variational data assimilation system at the China Meteorological Administration. Quart. J. Roy. Meteor. Soc., 145, 1882–1896, doi: https://doi.org/10.1002/qj.3533.
Zhang, M., H. Qiu, X. Fang, et al., 2015: Study on the multivariate statistical estimation of tropical cyclone intensity using FY-3 MWRI brightness temperature data. J. Trop. Meteor., 31, 87–94, doi: https://doi.org/10.16032/j.issn.1004-4965.2015.01.010. (in Chinese)
Zhang, M., Q. F. Lu, S. Y. Gu, et al., 2019b: Analysis and correction of the difference between the ascending and descending orbits of the FY-3C microwave imager. J. Remote Sens., 23, 841–849, doi: https://doi.org/10.11834/jrs.20198235. (in Chinese)
Zhang, S. J., L. S. Chen, and X. D. Xu, 2005: The diagnoses and numerical simulation on the unusual track of Helen (9505). Chinese J. Atmos. Sci., 29, 937–946, doi: https://doi.org/10.3878/j.issn.1006-9895.2005.06.09. (in Chinese)
Zhao, Y. L., 2013: Retrieval algorithm of sea surface wind vectors for WindSat based on a simple forward model. Chinese J. Oceanol. Limn., 31, 210–218, doi: https://doi.org/10.1077/s00343-013-2079-1.
Zhao, Y. L., and M. X. He, 2013: A simplified forward model of WindSat for sea surface wind vector retrieving. Prriod. Ocean Univ. China, 33, 98–105, doi: https://doi.org/10.16441/j.ckki.hdxb.2013.12.016. (in Chinese)
Zhou, Y. Q., and J. H. Yu, 2015: Circulation characteristics of track variation anomaly of tropical cyclone in the northwestern Pacific. J. Meteor. Sci., 35, 720–727. (in Chinese)
Zhou, Z. H., X. L. Zou, and Z. K. Qin, 2017: Detection and analysis of television frequency interference from an FY-3C microwave radiation imager. J. Remote Sens., 21, 689–701, doi: https://doi.org/10.11834/jrs.20176364.
Zhu, E. Z., L. Zhang, H. Q. Shi, et al., 2016: Accuracy of WindSat sea surface temperature: Comparison of buoy data from 2004 to 2013. J. Remote Sens., 20, 315–327, doi: https://doi.org/10.11834/jrs.20165093. (in Chinese)
Zou, X. L., 2012: Introduction to microwave imager radiance observations from polar-orbiting meteorological satellites. Adv. Meteor. Sci. Technol., 2, 45–50. (in Chinese)
Zou, X. L., J. Zhao, F. Z. Weng, et al., 2012: Detection of radio-frequency interference signal over land from FY-3B Microwave Radiation Imager (MWRI). IEEE Trans. Geosci. Remote Sens., 50, 4994–5003, doi: https://doi.org/10.1109/TGRS.2012.2191792.
Zou, X. L., J. Zhao, F. Z. Weng, et al., 2013: Detection of radio-frequency interference signal over land from FY-3B Microwave Radiation Imager (MWRI). Adv. Meteor. Sci. Technol., 3, 144–153. (in Chinese)
Acknowledgments
We acknowledge Dr Hao Chen from the Jiangsu Meteorological Bureau for providing the FY-3D/MWRI coefficient in RTTOV. We acknowledge Professor Fuzhong Weng for providing beneficial suggestions and editing the paper. We acknowledge Dr Jin Zhang for providing the code to calculate the typhoon track from the output data of GRAPES_GFS. We also acknowledge helpful discussions with Dr Shengli Wu and PhD student Ruoying Yin.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the National Natural Science Foundation of China (41675108), National Key Research and Development Program (2018YFC1506700), and Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0105).
Rights and permissions
About this article
Cite this article
Xiao, H., Han, W., Wang, H. et al. Impact of FY-3D MWRI Radiance Assimilation in GRAPES 4DVar on Forecasts of Typhoon Shanshan. J Meteorol Res 34, 836–850 (2020). https://doi.org/10.1007/s13351-020-9122-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13351-020-9122-x