[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

ENSO Features, Dynamics, and Teleconnections to East Asian Climate as Simulated in CAMS-CSM

  • Special Collection on CAMS-CSM
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

This study evaluates the performance of CAMS-CSM (the climate system model of the Chinese Academy of Meteorological Sciences) in simulating the features, dynamics, and teleconnections to East Asian climate of the El Niño–Southern Oscillation (ENSO). In general, fundamental features of ENSO, such as its dominant patterns and phase-locking features, are reproduced well. The two types of El Niño are also represented, in terms of their spatial distributions and mutual independency. However, the skewed feature is missed in the model and the simulation of ENSO is extremely strong, which is found—based on Bjerknes index assessment—to be caused by underestimation of the shortwave damping effect. Besides, the modeled ENSO exhibits a regular oscillation with a period shorter than observed. By utilizing the Wyrtki index, it is suggested that this periodicity bias results from an overly quick phase transition induced by feedback from the thermocline and zonal advection. In addition to internal dynamics of ENSO, its external precursors—such as the North Pacific Oscillation with its accompanying seasonal footprinting mechanism, and the Indian Ocean Dipole with its 1-yr lead correlation with ENSO—are reproduced well by the model. Furthermore, with respect to the impacts of ENSO on the East Asian summer monsoon, although the anomalous Philippine anticyclone is reproduced in the post-El Niño summer, it exhibits an eastward shift compared with observation; and as a consequence, the observed flooding of the Yangtze River basin is poorly represented, with unrealistic air–sea interaction over the South China Sea being the likely physical origin of this bias. The response of wintertime lowertropospheric circulation to ENSO is simulated well, in spite of an underestimation of temperature anomalies in central China. This study highlights the dynamic processes that are key for the simulation of ENSO, which could shed some light on improving this model in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AchutaRao, K., and K. R. Sperber, 2006: ENSO simulation in coupled ocean–atmosphere models: Are the current models better? Climate Dyn., 27: 1–15, doi: 10.1007/s00382-006-0119-7.

    Article  Google Scholar 

  • Alexander, M. A., D. J. Vimont, P. Chang, et al., 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23: 2885–2901, doi: 10.1175/2010JCLI3205.1.

    Article  Google Scholar 

  • Annamalai, H., S.-P. Xie, J.-P. McCreary, et al., 2005: Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate, 18: 302–319, doi: 10.1175/JCLI-3268.1.

    Article  Google Scholar 

  • Ashok, K., S. K. Behera, S. A. Rao, et al., 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res. Oceans, 112, C11007, doi: 10.1029/2006JC003798.

    Article  Google Scholar 

  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46: 1687–1712, doi: 10.1175/1520-0469(1989)046<1687:IVIA TA>2.0.CO;2.

    Article  Google Scholar 

  • Behringer, D. W., M. Ji, and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon. Wea. Rev., 126: 1013–1021, doi: 10.1175/1520-0493(1998)126<1013:AICMFE>2.0.CO;2.

    Google Scholar 

  • Bellenger, H., E. Guilyardi, J. Leloup, et al., 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42: 1999–2018, doi: 10.1007/s00382-013-1783-z.

    Article  Google Scholar 

  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97: 163–172, doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    Article  Google Scholar 

  • Chen, L., and Y. Q. Yu, 2014: Preliminary evaluations of ENSOrelated cloud and water vapor feedbacks in FGOALS. Flexible Global Ocean–Atmosphere–Land System Model: A Modeling Tool for the Climate Change Research Community, T. J. Zhou, Y. Q. Yu, Y. M. Liu, et al., Eds., Springer, Berlin, 189–197, doi: 10.1007/978-3-642-41801-3_23.

    Chapter  Google Scholar 

  • Chen, L., Y. Q. Yu, and D.-Z. Sun, 2013: Cloud and water vapor feedbacks to the El Niño warming: Are they still biased in CMIP5 models? J. Climate, 26: 4947–4961, doi: 10.1175/JCLID-12-00575.1.

    Article  Google Scholar 

  • Chen, L., T. Li, S. K. Behera, et al., 2016a: Distinctive precursory air–sea signals between regular and super El Niños. Adv. Atmos. Sci., 33: 996–1004, doi: 10.1007/s00376-016-5250-8.

    Article  Google Scholar 

  • Chen, L., Y. Q. Yu, and W. P. Zheng, 2016b: Improved ENSO simulation from climate system model FGOALS-g1.0 to FGOALS-g2. Climate Dyn., 47: 2617–2634, doi: 10.1007/s00382-016-2988-8.

    Article  Google Scholar 

  • Chen, L., T. Li, B. Wang, et al., 2017: Formation mechanism for 2015/16 super El Niño. Sci. Rep., 7: 2975, doi: 10.1038/s41598-017-02926-3.

    Article  Google Scholar 

  • Chen, L. X., M. Dong, and Y. N. Shao, 1992: The characteristics of interannual variations on the East-Asian monsoon. J. Meteor. Soc. Japan, 70: 397–421, doi: 10.2151/jmsj1965. 70.1B_397.

    Article  Google Scholar 

  • Chen, M. C., and T. Li, 2018: Why 1986 El Niño and 2005 La Niña evolved different from a typical El Niño and La Niña. Climate Dyn., 51: 4309–4327, doi: 10.1007/s00382-017-3852-1.

    Article  Google Scholar 

  • Chen, M. C., T. Li, X. Y. Shen, et al., 2016: Relative roles of dynamic and thermodynamic processes in causing evolution asymmetry between El Niño and La Niña. J. Climate, 29: 2201–2220, doi: 10.1175/JCLI-D-15-0547.1.

    Article  Google Scholar 

  • Chen, S. F., B. Yu, and W. Chen, 2014: An analysis on the physical process of the influence of AO on ENSO. Climate Dyn., 42: 973–989, doi: 10.1007/s00382-012-1654-z.

    Article  Google Scholar 

  • Chen, W., H.-F. Graf, and R.-H. Huang, 2000: The interannual variability of East Asian winter monsoon and its relation to the summer monsoon. Adv. Atmos. Sci., 17: 48–60, doi: 10.1007/s00376-000-0042-5.

    Article  Google Scholar 

  • Chen, W., X. Q. Lan, L. Wang, et al., 2013: The combined effects of the ENSO and the Arctic Oscillation on the winter climate anomalies in East Asia. Chinese Sci. Bull., 58: 1355–1362, doi: 10.1007/s11434-012-5654-5.

    Article  Google Scholar 

  • Chen, Z., R. G. Wu, and W. Chen, 2014: Distinguishing interannual variations of the northern and southern modes of the East Asian winter monsoon. J. Climate, 27: 835–851, doi: 10.1175/JCLI-D-13-00314.1.

    Article  Google Scholar 

  • Chung, P. H., and T. Li, 2013: Interdecadal relationship between the mean state and El Niño types. J. Climate, 26: 361–379, doi: 10.1175/JCLI-D-12-00106.1.

    Article  Google Scholar 

  • Fedorov, A. V., and S. G. Philander, 2001: A stability analysis of tropical ocean–atmosphere interactions: Bridging measurements and theory for El Niño. J. Climate, 14: 3086–3101, doi: 10.1175/1520-0442(2001)014<3086:ASAOTO>2.0.CO;2.

    Article  Google Scholar 

  • Gong, D. Y., S. W. Wang, and J. H. Zhu, 2001: East Asian winter monsoon and Arctic oscillation. Geophys. Res. Lett., 28: 2073–2076, doi: 10.1029/2000GL012311.

    Article  Google Scholar 

  • Gong, H. N., L. Wang, W. Chen, et al., 2014: The climatology and interannual variability of the East Asian winter monsoon in CMIP5 models. J. Climate, 27: 1659–1678, doi: 10.1175/JCLI-D-13-00039.1.

    Article  Google Scholar 

  • Gong, H. N., L. Wang, W. Chen, et al., 2015: Diverse influences of ENSO on the East Asian–western Pacific winter climate tied to different ENSO properties in CMIP5 models. J. Climate, 28: 2187–2202, doi: 10.1175/JCLI-D-14-00405.1.

    Article  Google Scholar 

  • Gong, H. N., L. Wang, W. Chen, et al., 2018: Diversity of the Pacific–Japan pattern among CMIP5 models: Role of SST anomalies and atmospheric mean flow. J. Climate, 31: 6857–6877, doi: 10.1175/JCLI-D-17-0541.1.

    Article  Google Scholar 

  • Griffies, S. M., M. J. Harrison, R. C. Pacanowski, et al., 2004: A Technical Guide to MOM4. GFDL Ocean Group Technical Report No. 5, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, 339 pp.

    Google Scholar 

  • Guilyardi, E., 2006: El Niño-mean state-seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26: 329–348, doi: 10.1007/s00382-005-0084-6.

    Article  Google Scholar 

  • Guilyardi, E., A. Wittenberg, A. Fedorov, et al., 2009: Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90: 325–340, doi: 10.1175/2008BAMS2387.1.

    Article  Google Scholar 

  • Ham, Y. G., and J. S. Kug, 2012: How well do current climate models simulate two types of El Niño? Climate Dyn., 39: 383–398, doi: 10.1007/s00382-011-1157-3.

    Article  Google Scholar 

  • He, S. P., and H. J. Wang, 2013: Oscillating relationship between the East Asian winter monsoon and ENSO. J. Climate, 26: 9819–9838, doi: 10.1175/JCLI-D-13-00174.1. Hwang, Y.-T., and D. M. W. Frierson, 2013: Link between the double-intertropical convergence zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA, 110: 4935–4940, doi: 10.1073/pnas.1213302110.

    Article  Google Scholar 

  • Izumo, T., J. Vialard, M. Lengaigne, et al., 2010: Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat. Geosci., 3: 168–172, doi: 10.1038/ngeo760.

    Article  Google Scholar 

  • Jiang, Z. H., H. Yang, Z. Y. Liu, et al., 2014: Assessing the influence of regional SST modes on the winter temperature in China: The effect of tropical Pacific and Atlantic. J. Climate, 27: 868–879, doi: 10.1175/JCLI-D-12-00847.1.

    Article  Google Scholar 

  • Jin, F.-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54: 811–829, doi: 10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    Google Scholar 

  • Jin, F.-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54: 830–847, doi: 10.1175/1520-0469(1997)054<0830:AEORPF> 2.0.CO;2.

    Google Scholar 

  • Jin, F.-F., S. T. Kim, and L. Bejarano, 2006: A coupled-stability index for ENSO. Geophys. Res. Lett., 33, L23708, doi: 10.1029/2006GL027221.

    Article  Google Scholar 

  • Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77: 437–472, doi: 10.1175/1520-0477(1996)077<0437:TNYR P>2.0.CO;2.

    Article  Google Scholar 

  • Kim, J. W., S. W. Yeh, and E. C. Chang, 2014: Combined effect of El Niño–Southern Oscillation and Pacific decadal oscillation on the East Asian winter monsoon. Climate Dyn., 42: 957–971, doi: 10.1007/s00382-013-1730-z.

    Article  Google Scholar 

  • Kim, S.-T., and F.-F. Jin, 2011: An ENSO stability analysis. Part II: Results from the twentieth and twenty-first century simulations of the CMIP3 models. Climate Dyn., 36: 1609–1627, doi: 10.1007/s00382-010-0872-5.

    Google Scholar 

  • Kim, S. T., W. J. Cai, F.-F. Jin, et al., 2014a: ENSO stability in coupled climate models and its association with mean state. Climate Dyn., 42: 3313–3321, doi: 10.1007/s00382-013-1833-6.

    Article  Google Scholar 

  • Kim, S. T., W. J. Cai, F.-F. Jin, et al., 2014b: Response of El Niño sea surface temperature variability to greenhouse warming. Nat. Climate Change, 4: 786–790, doi: 10.1038/nclimate 2326.

    Article  Google Scholar 

  • Kirtman, B. P., and P. S. Schopf, 1998: Decadal variability in ENSO predictability and prediction. J. Climate, 11: 2804–2822, doi: 10.1175/1520-0442(1998)011<2804:DVIEPA>2.0.CO;2.

    Article  Google Scholar 

  • Kleeman, R., and A. M. Moore, 1997: A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J. Atmos. Sci., 54: 753–767, doi: 10.1175/1520-0469 (1997)054<0753:ATFTLO>2.0.CO;2.

    Article  Google Scholar 

  • Knutson, T. R., S. Manabe, and D. F. Gu, 1997: Simulated ENSO in a global coupled ocean–atmosphere model: Multidecadal amplitude modulation and CO2 sensitivity. J. Climate, 10: 138–161, doi: 10.1175/1520-0442(1997)010<0138:SEIAGC> 2.0.CO;2.

    Article  Google Scholar 

  • Kug, J. S., and Y. G. Ham, 2011: Are there two types of La Nina? Geophys. Res. Lett., 38, L16704, doi: 10.1029/2011GL048237.

    Article  Google Scholar 

  • Kug, J. S., F. F. Jin, and S. I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22: 1499–1515, doi: 10.1175/2008JCLI2624.1.

    Article  Google Scholar 

  • Kug, J. S., Y. G. Ham, J. Y. Lee, et al., 2012: Improved simulation of two types of El Niño in CMIP5 models. Environ. Res. Lett., 7: 039502, doi: 10.1088/1748-9326/7/3/039502.

    Article  Google Scholar 

  • Li, C. F., A. A. Scaife, R. Y. Lu, et al., 2016: Skillful seasonal prediction of Yangtze River valley summer rainfall. Environ. Res. Lett., 11: 094002, doi: 10.1088/1748-9326/11/9/094002.

    Article  Google Scholar 

  • Li, C. Y., 1990: Interaction between anomalous winter monsoon in East Asia and El Niño events. Adv. Atmos. Sci., 7: 36–46, doi: 10.1007/BF02919166.

    Article  Google Scholar 

  • Li, C. Y., 1996: A further study on interaction between anomalous winter monsoon in East Asia and El Nino. J. Meteor. Res., 10: 309–320. Li, G. and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial pacific cold tongue and double ITCZ problems. J. Climate, 27: 1765–1780, doi: 10.1175/JCLI-D-13-00337.1.

    Google Scholar 

  • Li, S. L., and G. T. Bates, 2007: Influence of the Atlantic multidecadal oscillation on the winter climate of East China. Adv. Atmos. Sci., 24: 126–135, doi: 10.1007/s00376-007-0126-6.

    Article  Google Scholar 

  • Li, T., B. Wang, B. Wu, et al., 2017: Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteor. Res., 31: 987–1006, doi: 10.1007/s13351-017-7147-6.

    Article  Google Scholar 

  • Li, T. M., 1997: Phase transition of the El Niño–Southern Oscillation: A stationary SST mode. J. Atmos. Sci., 54: 2872–2887, doi: 10.1175/1520-0469(1997)054<2872:PTOTEN>2.0.CO;2.

    Article  Google Scholar 

  • Li, Y. Q., and S. Yang, 2010: A dynamical index for the East Asian winter monsoon. J. Climate, 23: 4255–4262, doi: 10.1175/2010JCLI3375.1.

    Article  Google Scholar 

  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20: 4497–4525, doi: 10.1175/JCLI4272.1.

    Article  Google Scholar 

  • Liu, G., L.-R. Ji, S.-Q. Sun, et al., 2012: Low-and mid-high latitude components of the East Asian winter monsoon and their reflecting variations in winter climate over eastern China. Atmos. Ocean. Sci. Lett., 5: 195–200, doi: 10.1080/16742834. 2012.11446985.

    Article  Google Scholar 

  • Liu, Y., H.-L. Ren, A. A. Scaife, et al., 2018: Evaluation and statistical downscaling of East Asian summer monsoon forecasting in BCC and MOHC seasonal prediction systems. Quart. J. Roy. Meteor. Soc., doi: 10.1002/qj.3405.

  • Lloyd, J., E. Guilyardi, H. Weller, et al., 2009: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Atmos. Sci. Lett., 10: 170–176, doi: 10.1002/asl.227.

    Article  Google Scholar 

  • Lloyd, J., E. Guilyardi, and H. Weller, 2011: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part II: Using AMIP runs to understand the heat flux feedback mechanisms. Climate Dyn., 37: 1271–1292, doi: 10.1007/s00382-010-0895-y.

    Google Scholar 

  • Lloyd, J., E. Guilyardi, and H. Weller, 2012: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part III: The shortwave flux feedback. J. Climate, 25: 4275–4293, doi: 10.1175/JCLI-D-11-00178.1.

    Google Scholar 

  • Lu, B., and H.-L. Ren, 2016: Improving ENSO periodicity simulation by adjusting cumulus entrainment in BCC_CSMs. Dyn. Atmos. Oceans, 76: 127–140, doi: 10.1016/j.dynatmoce.2016. 10.005.

    Article  Google Scholar 

  • Lu, B., A. A. Scaife, N. Dunstone, et al., 2017: Skillful seasonal predictions of winter precipitation over southern China. Environ. Res. Lett., 12: 074021, doi: 10.1088/1748-9326/aa739a.

    Article  Google Scholar 

  • Lu, B., F.-F. Jin, and H.-L. Ren, 2018: A coupled dynamic index for ENSO periodicity. J. Climate, 31: 2361–2376, doi: 10. 1175/JCLI-D-17-0466.1.

    Article  Google Scholar 

  • Luo, J.-J., R. C. Zhang, S. K. Behera, et al., 2010: Interaction between El Niño and extreme Indian Ocean dipole. J. Climate, 23: 726–742, doi: 10.1175/2009JCLI3104.1.

    Article  Google Scholar 

  • Ma, T. J., W. Chen, D. Nath, et al., 2018: East Asian winter monsoon impacts the ENSO-related teleconnections and North American seasonal air temperature prediction. Sci. Rep., 8: 6547, doi: 10.1038/s41598-018-24552-3.

    Article  Google Scholar 

  • Misra, V., L. Marx, M. Brunke, et al., 2008: The equatorial Pacific cold tongue bias in a coupled climate model. J. Climate, 21: 5852–5869, doi: 10.1175/2008JCLI2205.1.

    Article  Google Scholar 

  • Morice, C. P., J. J. Kennedy, N. A. Rayner, et al., 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The Had-CRUT4 data set. J. Geophys. Res. Atmos., 117, D08101, doi: 10.1029/2011JD017187.

    Article  Google Scholar 

  • Murray, R. J., 1996: Explicit generation of orthogonal grids for ocean models. J. Comput. Phys., 126: 251–273, doi: 10.1006/jcph.1996.0136.

    Article  Google Scholar 

  • Neelin, J. D., 1991: The slow sea surface temperature mode and the fast-wave limit: Analytic theory for tropical interannual oscillations and experiments in a hybrid coupled model. J. Atmos. Sci., 48: 584–606, doi: 10.1175/1520-0469(1991)048 <0584:TSSSTM>2.0.CO;2.

    Article  Google Scholar 

  • Philander, S. G. H., D. Gu, G. Lambert, et al., 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9: 2958–2972, doi: 10.1175/1520-0442(1996)009<2958:WTII MN>2.0.CO;2.

    Article  Google Scholar 

  • Rayner, N. A., P. Brohan, D. E. Parker, et al., 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. J. Climate, 19: 446–469, doi: 10.1175/JCLI3637.1.

    Article  Google Scholar 

  • Rong, X. Y., J. Li, H. M. Chen, et al., 2018: The CAMS climate system model and a basic evaluation of its climatology and climate variability simulation. J. Meteor. Res., 32: 839–861, doi: 10.1007/s13351-018-8058-x.

    Article  Google Scholar 

  • Shi, N., 1996: Features of the East Asian winter monsoon intensity on multiple time scale in recent 40 years and their relation to climate. Quart. J. Appl. Meteor., 7: 175–182. (in Chinese)

    Google Scholar 

  • Stuecker, M. F., F.-F. Jin, A. Timmermann, et al. 2015: Combination mode dynamics of the anomalous northwest Pacific anticyclone. J. Climate, 28: 1093–1111, doi: 10.1175/JCLI-D-14-00225.1.

    Article  Google Scholar 

  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45: 3283–3287, doi: 10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2.

    Article  Google Scholar 

  • Sun, D. Z., Y. Q. Yu, and T. Zhang, 2009: Tropical water vapor and cloud feedbacks in climate models: A further assessment using coupled simulations. J. Climate, 22: 1287–1304, doi: 10.1175/2008JCLI2267.1.

    Article  Google Scholar 

  • Timmermann, A., J. Oberhuber, A. Bacher, et al., 1999: Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature, 398: 694–697, doi: 10.1038/19505.

    Article  Google Scholar 

  • Tokinaga, H., and S.-P. Xie, 2011: Wave-and anemometer-based sea surface wind (WASWind) for climate change analysis. J. Climate, 24: 267–285, doi: 10.1175/2010JCLI3789.1. van Oldenborgh, G. J., S. Y. Philip, and M. Collins, 2005: El Niño in a changing climate: A multi-model study. Ocean Sci., 1: 81–95, doi: 10.5194/os-1-81-2005.

    Article  Google Scholar 

  • Vannière, B., E. Guilyardi, G. Madec, et al., 2013: Using seasonal hindcasts to understand the origin of the equatorial cold tongue bias in CGCMs and its impact on ENSO. Climate Dyn., 40: 963–981, doi: 10.1007/s00382-012-1429-6.

    Article  Google Scholar 

  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28: 3923–3926, doi: 10.1029/2001 GL013435.

    Article  Google Scholar 

  • Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13: 1517–1536, doi: 10.1175/1520-0442(2000)013 <1517:PEATHD>2.0.CO;2.

    Article  Google Scholar 

  • Wang, C. Z., W. Q. Wang, D. X. Wang, et al., 2006: Interannual variability of the South China Sea associated with El Niño. J. Geophys. Res. Oceans, 111, C03023, doi: 10.1029/2005JC 003333.

    Google Scholar 

  • Wang, L., and M.-M. Lu, 2016: The East Asian winter monsoon. The Global Monsoon System: Research and Forecast, 3rd Ed. C. P. Chang, H. C. Kuo, N. C. Lau, et al., Eds., World Scientific, Singapore, 51–61, doi: 10.1142/9789813200913_0005.

    Google Scholar 

  • Wang, L., W. Chen, and R. H. Huang, 2008: Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon. Geophys. Res. Lett., 35, L20702, doi: 10.1029/2008GL035287.

    Article  Google Scholar 

  • Watanabe, M., M. Chikira, Y. Imada, et al., 2011: Convective control of ENSO simulated in MIROC. J. Climate, 24: 543–562, doi: 10.1175/2010JCLI3878.1.

    Article  Google Scholar 

  • Weng, H., K. Ashok, S. K. Behera, et al., 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29: 113–129, doi: 10.1007/s00382-007-0234-0.

    Article  Google Scholar 

  • Weng, H., S. K. Behera, and T. Yamagata, 2009: Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Climate Dyn., 32: 663–674, doi: 10.1007/s00382-008-0394-6.

    Article  Google Scholar 

  • Wu, B. Y., R. Zhang, and R. D’Arrigo, 2006: Distinct modes of the East Asian winter monsoon. Mon. Wea. Rev., 134: 2165–2179, doi: 10.1175/MWR3150.1.

    Article  Google Scholar 

  • Wyrtki, K., 1985: Water displacements in the Pacific and the genesis of El Niño cycles. J. Geophys. Res. Oceans, 90: 7129–7132, doi: 10.1029/JC090iC04p07129.

    Article  Google Scholar 

  • Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78: 2539–2558, doi: 10.1175/1520-0477(1997)078<2539: GPAYMA>2.0.CO;2.

    Article  Google Scholar 

  • Xie, S.-P., K. M. Hu, J. Hafner, et al., 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22: 730–747, doi: 10.1175/2008JCLI2544.1.

    Article  Google Scholar 

  • Xie, S.-P., Y. Kosaka, Y. Du, et al., 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33: 411–432, doi: 10.1007/s00376-015-5192-6.

    Article  Google Scholar 

  • Yu, J.-Y., H.-Y. Kao, and T. Lee, 2010: Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J. Climate, 23: 2869–2884, doi: 10.1175/2010 JCLI3171.1.

    Article  Google Scholar 

  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115: 2262–2278, doi: 10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.

    Article  Google Scholar 

  • Zhang, R., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the’ 86/87 and’ 91/92 events. J. Meteor. Soc. Japan, 74: 49–62, doi: 10.2151/jmsj1965.74.1_49.

    Article  Google Scholar 

  • Zhang, W. J., F.-F. Jin, M. F. Stuecker, et al., 2016: Unraveling El Niño’s impact on the East Asian monsoon and Yangtze River summer flooding. Geophys. Res. Lett., 43: 11375–11382, doi: 10.1002/2016GL071190.

    Article  Google Scholar 

  • Zheng, W., P. Braconnot, E. Guilyardi, et al., 2008: ENSO at 6ka and 21ka from ocean–atmosphere coupled model simulations. Climate Dyn., 30: 745–762, doi: 10.1007/s00382-007-0320-3.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the editors and reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Li Ren.

Additional information

Supported by the National Key Research and Development Program of China (2018YFC1506002, 2017YFC1502302, and 2016YFA0602104), Key Research Program of Xinjiang Meteorological Bureau (ZD201802), China Meteorological Administration Special Public Welfare Research Fund (GYHY201506013), and National Natural Science Foundation of China (41205058, 41375062, 41405080, 41505065, 41606019, and 41605116).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, B., Ren, HL. ENSO Features, Dynamics, and Teleconnections to East Asian Climate as Simulated in CAMS-CSM. J Meteorol Res 33, 46–65 (2019). https://doi.org/10.1007/s13351-019-8101-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-019-8101-6

Key words

Navigation