Abstract
High temperature accompanied with high humidity may result in unbearable and oppressive weather. In this study, future changes of extreme high temperature and heat stress in mainland China are examined based on daily maximum temperature (Tx) and daily maximum wet-bulb globe temperature (Tw). Tw has integrated the effects of both temperature and humidity. Future climate projections are derived from the bias-corrected climate data of five general circulation models under the Representative Concentration Pathways (RCPs) 2.6 and 8.5 scenarios. Changes of hot days and heat waves in July and August in the future (particularly for 2020–50 and 2070–99), relative to the baseline period (1981–2010), are estimated and analyzed. The results show that the future Tx and Tw of entire China will increase by 1.5–5°C on average around 2085 under different RCPs. Future increases in Tx and Tw exhibit high spatial heterogeneity, ranging from 1.2 to 6°C across different regions and RCPs. By around 2085, the mean duration of heat waves will increase by 5 days per annum under RCP8.5. According to Tx, heat waves will mostly occur in Northwest and Southeast China, whereas based on Tw estimates, heat waves will mostly occur over Southeast China and the mean heat wave duration will be much longer than those from Tx. The total extreme hot days (Tx or Tw > 35°C) will increase by 10–30 days. Southeast China will experience the severest heat stress in the near future as extreme high temperature and heat waves will occur more often in this region, which is particularly true when heat waves are assessed based on Tw. In comparison to those purely temperature-based indices, the index Tw provides a new perspective for heat stress assessment in China.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
American College of Sports Medicine (ACSM), 1984: Prevention of thermal injuries during distance running. Phys. Sportsmed., 12, 43–51, doi: 10.1080/00913847.1984.11701899.
Barriopedro, D., E. M. Fischer, and J. Luterbacher, 2011: The hot summer of 2010: Redrawing the temperature record map of Europe. Science, 332, 220–224, doi: 10.1126/science. 1201224.
Budd, G. M., 2008: Wet-bulb globe temperature (WBGT)-Its history and its limitations. J. Sci. Med. Sport, 11, 20–32, doi: 10.1016/j.jsams.2007.07.003.
Chen K., J. Bi, J. Chen, et al., 2015: Influence of heat wave definitions to the added effect of heat waves on daily mortality in Nanjing, China. Sci. Total Environ., 506–507, 18–25, doi: 10.1016/j.scitotenv.2014.10.092.
Chen Y., and Y. Li, 2017: An inter-comparison of three heat wave types in China during 1961–2010: Observed basic features and linear trends. Sci. Rep., 7, 45619, doi: 10.1038/srep45619.
Chen Y. Y., K. Yang, J. He, et al., 2011: Improving land surface temperature modeling for dry land of China. J. Geophys. Res., 116, D20104, doi: 10.1029/2011JD015921.
China Meteorological Administration, 2015: QX/T 280–2015 Monitoring indices of high temperature extremes. Available at http://www.cmastd.cn/standardView.jspx?id=2103. Accessed on 26 March 2017. (in Chinese).
Debele B., R. Srinivasan, and J. Y. Parlange, 2007: Accuracy evaluation of weather data generation and disaggregation methods at finer timescales. Adv. Water Res., 30, 1286–1300, doi: 10.1016/j.advwatres.2006.11.009.
Ding T., and W. H. Qian, 2011: Geographical patterns and temporal variations of regional dry and wet heatwave events in China during 1960–2008. Adv. Atmos. Sci., 28, 322–337, doi: 10.1007/s00376-010-9236-7.
Elliott J., D. Deryng, C. Müller, et al., 2014: Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. USA, 111, 3239–3244, doi: 10.1073/pnas.1222474110.
Fischer E. M., and R. Knutti, 2013: Robust projections of combined humidity and temperature extremes. Nat. Climate Change, 3, 126–130, doi: 10.1038/nclimate1682.
Grazzini F., L. Ferranti, F. Lalaurette, et al., 2003: The exceptional warm anomalies of summer 2003. ECMWF Newslett., 99, 2–9.
Guo X. J., J. B. Huang, Y. Luo, et al., 2017: Projection of heat waves over China for eight different global warming targets using 12 CMIP5 models. Theor. Appl. Climatol., 128, 507–522, doi: 10.1007/s00704-015-1718-1.
Guo Y. J., S. Q. Zhang, J. H. Yan, et al., 2016: A comparison of atmospheric temperature over China between radiosonde observations and multiple reanalysis datasets. J. Meteor. Res., 30, 242–257, doi: 10.1007/s13351-016-5169-0.
Hauser M., R. Orth, and S. I. Seneviratne, 2016: Role of soil moisture versus recent climate change for the 2010 heat wave in western Russia. Geophys. Res. Lett., 43, 2819–2826, doi: 10.1002/2016GL068036.
Hempel S., K. Frieler, L. Warszawski, et al., 2013: A trend-preserving bias correction—the ISI-MIP approach. Earth Syst. Dyn., 4, 219–236, doi: 10.5194/esd-4-219-2013.
Herring S. C., A. Hoell, M. P. Hoerling, et al., 2016: Explaining extreme events of 2015 from a climate perspective. Bull. Amer. Meteor. Soc., 97, S1–S145, doi: 10.1175/BAMS-ExplainingExtremeEvents2015.1.
Hirschi M., S. I. Seneviratne, V. Alexandrov, et al., 2011: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci., 4, 17–21, doi: 10.1038/ngeo1032.
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. F. Stocker, et al., Eds., Cambridge University Press, Cambridge, United Kingdom, New York, NY, USA, 1535 pp.
Leng G. Y., Q. H. Tang, S. Z. Huang, et al., 2016: Assessments of joint hydrological extreme risks in a warming climate in China. Int. J. Climatol., 36, 1632–1642, doi: 10.1002/joc.4447.
Li Y., Y. H. Ding, and W. J. Li, 2017: Observed trends in various aspects of compound heat waves across China from 1961 to 2015. J. Meteor. Res., 31, 455–467, doi: 10.1007/s13351-017-6150-2.
Li Y. H., Y. B. Cheng, G. Q. Cui, et al., 2014: Association between high temperature and mortality in metropolitan areas of four cities in various climatic zones in China: A time-series study. Environ. Health, 13, 65, doi: 10.1186/1476-069X-13-65.
Liu X. C., Q. H. Tang, X. J. Zhang, et al., 2017: Spatially distinct effects of preceding precipitation on heat stress over eastern China. Environ. Res. Lett., 12, 115010, doi: 10.1088/1748-9326/aa88f8.
Lorenz R., D. Argüeso, M. G. Donat, et al., 2016: Influence of land–atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble. J. Geophys. Res., 121, 607–623, doi: 10.1002/2015JD024053.
McSweeney C. F., and R. G. Jones, 2016: How representative is the spread of climate projections from the 5 CMIP5 GCMs used in ISI-MIP? Climate Serv., 1, 24–29, doi: 10.1016/j.cliser.2016.02.001.
Miao C. Y., Q. H. Sun, D. X. Kong, et al., 2016: Record-breaking heat in Northwest China in July 2015: Analysis of the severity and underlying causes. Bull. Amer. Meteor. Soc., 97, S97–S101, doi: 10.1175/BAMS-D-16-0142.1.
Mishra V., A. R. Ganguly, B. Nijssen, et al., 2015: Changes in observed climate extremes in global urban areas. Environ. Res. Lett., 10, 024005, doi: 10.1088/1748-9326/10/2/024005.
Mitchell D., 2016: Human influences on heat-related health indicators during the 2015 Egyptian heat wave. Bull. Amer. Meteor. Soc., 97, S70–S74, doi: 10.1175/BAMS-D-16-0132.1.
Mueller B., X. B. Zhang, and F. W. Zwiers, 2016: Historically hottest summers projected to be the norm for more than half of the world’s population within 20 years. Environ. Res. Lett., 11, 044011, doi: 10.1088/1748-9326/11/4/044011.
Murray F. W., 1967: On the computation of saturation vapor pressure. J. Appl. Meteor., 6, 203–204, doi: 10.1175/1520-0450(1967)006<0203:otcosv>2.0.co;2.
Qi L., and Y. Q. Wang, 2012: Changes in the observed trends in extreme temperatures over China around 1990. J. Climate, 25, 5208–5222, doi: 10.1175/jcli-d-11-00437.1.
Schar C., P. L. Vidale, D. Lüthi, et al., 2004: The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332–336, doi: 10.1038/nature02300.
Schewe J., J. Heinke, D. Gerten, et al., 2014: Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA, 111, 3245–3250, doi: 10.1073/pnas.1222 460110.
Seneviratne S. I., T. Corti, E. L. Davin, et al., 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125–161, doi: 10.1016/j.earscirev.2010.02.004.
Sherwood S. C., and M. Huber, 2010: An adaptability limit to climate change due to heat stress. Proc. Natl. Acad. Sci. USA, 107, 9552–9555, doi: 10.1073/pnas.0913352107.
Steadman R. G., 1979: The assessment of sultriness. Part I: A temperature–humidity index based on human physiology and clothing science. J. Appl. Meteor., 18, 861–873, doi: 10.1175/1520-0450(1979)018<0861:taospi>2.0.co;2.
Steadman R. G., 1984: A universal scale of apparent temperature. J. Climate Appl. Meteor., 23, 1674–1687, doi: 10.1175/1520-0450(1984)023<1674:ausoat>2.0.co;2.
Sun Q. H., C. Y. Miao, A. AghaKouchak, et al., 2017: Unraveling anthropogenic influence on the changing risk of heat waves in China. Geophys. Res. Lett., 44, 5078–5085, doi: 10.1002/2017GL073531.
Sun Y., L. C. Song, H. Yin, et al., 2016: Human influence on the 2015 extreme high temperature events in western China. Bull. Amer. Meteor. Soc., 97, S102–S106, doi: 10.1175/bams-d-16-0158.1.
Sun Y., X. B. Zhang, F. W. Zwiers, et al., 2014: Rapid increase in the risk of extreme summer heat in eastern China. Nat. Climate Change, 4, 1082–1085, doi: 10.1038/nclimate2410.
Tang Q. H., X. J. Zhang, and J. A. Francis, 2014: Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere. Nat. Climate Change, 4, 45–50, doi: 10.1038/nclimate2065.
Wang J. X. L., and D. J. Gaffen, 2001: Trends in extremes of surface humidity, temperature, and summertime heat stress in China. Adv. Atmos. Sci., 18, 742–751.
Warszawski L., K. Frieler, V. Huber, et al., 2014: The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): Project framework. Proc. Nat. Acad. Sci. USA, 111, 3228–3232, doi: 10.1073/pnas.1312330110.
Weedon G. P., S. Gomes, P. Viterbo, et al., 2011: Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J. Hydrometeor., 12, 823–848, doi: 10.1175/2011jhm1369.1.
Wehner M., D. Stone, H. Krishnan, et al., 2016: The deadly combination of heat and humidity in India and Pakistan in summer 2015. Bull. Amer. Meteor. Soc., 97, S81–S86, doi: 10.1175/BAMS-D-16-0145.1.
Willett K. M., and S. Sherwood, 2012: Exceedance of heat index thresholds for 15 regions under a warming climate using the wet-bulb globe temperature. Int. J. Climatol., 32, 161–177, doi: 10.1002/joc.2257.
Yan Z., P. D. Jones, T. D. Davies, et al., 2002: Trends of extreme temperatures in Europe and China based on daily observations. Climatic Change, 53, 355–392, doi: 10.1023/A:1014939413284.
Yang K., J. He, W. J. Tang, et al., 2010: On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agric. For. Meteor., 150, 38–46, doi: 10.1016/j.agrformet.2009.08.004.
Yin Y., Q. Tang, and X. Liu, 2015: A multi-model analysis of change in potential yield of major crops in China under climate change. Earth Syst. Dyn., 6, 45–59, doi: 10.5194/esd-6-45-2015.
Yin Y. Y., Q. H. Tang, L. X. Wang, et al., 2016: Risk and contributing factors of ecosystem shifts over naturally vegetated land under climate change in China. Sci. Rep., 6, 20905, doi: 10.1038/srep20905.
You Q. L., J. Z. Min, K. Fraedrich, et al., 2014: Projected trends in mean, maximum, and minimum surface temperature in China from simulations. Glob. Planet. Change, 112, 53–63, doi: 10.1016/j.gloplacha.2013.11.006.
You Q. L., Z. H. Jiang, L. Kong, et al., 2017: A comparison of heat wave climatologies and trends in China based on multiple definitions. Climate Dyn., 48, 3975–3989, doi: 10.1007/s00382-016-3315-0.
Zhai P. M., and X. H. Pan, 2003: Trends in temperature extremes during 1951–1999 in China. Geophys. Res. Lett., 30, 1913, doi: 10.1029/2003gl018004.
Zhang J. Y., and L. Y. Wu, 2011: Land–atmosphere coupling amplifies hot extremes over China. Chin. Sci. Bull., 56, 3328–3332, doi: 10.1007/s11434-011-4628-3.
Zhang Q., M. Z. Xiao, V. P. Singh, et al., 2015: Observational evidence of summer precipitation deficit-temperature coupling in China. J. Geophys. Res., 120, 10040–10049, doi: 10.1002/2015JD023830.
Zhang X. J., Q. H. Tang, M. Pan, et al., 2014: A long-term land surface hydrologic fluxes and states dataset for China. J. Hydrometeor., 15, 2067–2084, doi: 10.1175/JHM-D-13-0170.1.
Zhang Y. J., Z. Q. Gao, Z. T. Pan, et al., 2017: Spatiotemporal variability of extreme temperature frequency and amplitude in China. Atmos. Res., 185, 131–141, doi: 10.1016/j.atmosres.2016.10.018.
Acknowledgments
We acknowledge the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) coordination team for providing the bias-corrected GCM climate data (https://www.isimip.org/).
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the National Natural Science Foundation of China (41730645 and 41425002), Key Research Program of the Chinese Academy of Sciences (ZDRW-ZS-2017-4), National Youth Top-Notch Talent Support Program in China, and Chinese Postdoctoral Science Foundation (2016M601117).
Rights and permissions
About this article
Cite this article
Liu, X., Tang, Q., Zhang, X. et al. Projected Changes in Extreme High Temperature and Heat Stress in China. J Meteorol Res 32, 351–366 (2018). https://doi.org/10.1007/s13351-018-7120-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13351-018-7120-z