Abstract
Fengyun-4A (FY-4A), the first of the Chinese next-generation geostationary meteorological satellites, launched in 2016, offers several advances over the FY-2: more spectral bands, faster imaging, and infrared hyperspectral measurements. To support the major objective of developing the prototypes of FY-4 science algorithms, two science product algorithm testbeds for imagers and sounders have been developed by the scientists in the FY-4 Algorithm Working Group (AWG). Both testbeds, written in FORTRAN and C programming languages for Linux or UNIX systems, have been tested successfully by using Intel/g compilers. Some important FY-4 science products, including cloud mask, cloud properties, and temperature profiles, have been retrieved successfully through using a proxy imager, Himawari-8/Advanced Himawari Imager (AHI), and sounder data, obtained from the Atmospheric InfraRed Sounder, thus demonstrating their robustness. In addition, in early 2016, the FY-4 AWG was developed based on the imager testbed—a near real-time processing system for Himawari-8/AHI data for use by Chinese weather forecasters. Consequently, robust and flexible science product algorithm testbeds have provided essential and productive tools for popularizing FY-4 data and developing substantial improvements in FY-4 products.
Similar content being viewed by others
References
Ackerman, S. A., R. E. Holz, R. Frey, et al., 2008: Cloud detection with MODIS. Part II: Validation. J. Atmos. Ocean. Technol., 25, 1073–1086, doi: 10.1175/2007JTECHA1053.1.
Ackerman, S., R. Frey, K. Strabala, et al., 2010: Discriminating Clear-Sky from Cloud with MODIS—Algorithm Theoretical Basis Document (MOD35) Version 6.1, Tech. rep., MODIS Cloud Mask Team, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin, 117 pp. Available online at https://modis-atmos.gsfc.nasa.gov/_docs/MOD35_ ATBD_Collection6.pdf (accessed on 12 May 2017).
Cao, D. J., F. X. Huang, and X. S. Qie, 2014: Development and evaluation of detection algorithm for FY-4 geostationary lightning imager (GLI) measurement. Proceedings of XV International Conference on Atmospheric Electricity, Norman, Oklahoma, U.S.A.
Comiso, J. C., D. J. Cavalieri, and T. Markus, 2003: Sea ice concentration, ice temperature, and snow depth using AMSR-E data. IEEE Trans. Geosci. Remote Sens., 41, 243–252, doi: 10.1109/TGRS.2002.808317.
Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERAInterim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc,. 137, 553–597, doi: 10.1002/qj.v137.656.
Eyre, J. R., and H. M. Woolf, 1988: Transmittance of atmospheric gases in the microwave region: A fast model. Appl. Opt., 27, 3244–3249, doi: 10.1364/AO.27.003244.
Goodman, S. J., R. J. Blakeslee, W. J. Koshak, et al., 2013: The GOES-R geostationary lightning mapper (GLM). Atmos. Res., 125–126, 34–39, doi: 10.1016/j.atmosres.2013.01.006.
Greenwald, T. J., R. B. Pierce, T. Schaack, et al., 2016: Real-time simulation of the GOES-R ABI for user readiness and product evaluation. Bull. Amer. Meteor. Soc,. 97, 245–261, doi: 10.1175/BAMS-D-14-00007.1.
Heidinger, A. K., A. T. Evan, M. J. Foster, et al., 2012: A naive Bayesian cloud-detection scheme derived from CALIPSO and applied within PATMOS-x. J. Appl. Meteor. Climate, 51, 1129–1144, doi: 10.1175/JAMC-D-11-02.1.
Hu, X. Q., N. Xu, F. Z. Weng, et al., 2013: Long-term monitoring and correction of FY-2 infrared channel calibration using AIRS and IASI. IEEE Trans. Geosci. Remote Sens., 51, 5008–5018, doi: 10.1109/TGRS.2013.2275871.
Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–47, 1 doi: 10.1175/1520-0477(1996)077<0437: TNYRP>2.0.CO;2.
Kanamitsu, M., 1989: Description of the NMC global data assimilation and forecast system. Wea. Forecasting, 4, 335–342, doi: 10.1175/1520-0434(1989)004<0335:DOTNGD>2.0.CO;2.
Li, J., W. W. Wolf, W. P. Menzel, et al., 2000: Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation. J. Appl. Meteor., 39, 1248–1268, doi: 10.1175/1520-0450(2000)039<1248:GSOTAF>2.0.CO;2.
Liang, S. L., 2003: A direct algorithm for estimating land surface broadband albedos from MODIS imagery. IEEE Trans. Geosci. Remote Sens,. 41, 136–145, doi: 10.1109/TGRS. 2002.807751.
Liu, C., P. Yang, P. Minnis, et al., 2014: A two-habit model for the microphysical and optical properties of ice clouds. Atmos. Chem. Phys., 14, 13719–13737, doi: 10.5194/acp-14-13719-2014.
Liu, H., and J. Li, 2011: An improvement in forecasting rapid intensification of Typhoon Sinlaku (2008) using clear-sky full spatial resolution advanced IR soundings. J. Appl. Meteor. Climate, 49, 821–827.
Liu, Q. H., and S. Boukabara, 2014: Community Radiative Transfer Model (CRTM) applications in supporting the Suomi National Polar-orbiting Partnership (SNPP) mission validation and verification. Remote Sens. Environ., 140, 744–754, doi: 10.1016/j.rse.2013.10.011.
Lu, F., X. H. Zhang, and J. M. Xu, 2008: Image navigation for the FY2 geosynchronous meteorological satellite. J. Atmos. Ocean. Technol,. 25, 1149–1165, doi: 10.1175/2007JTECHA964.1.
Ma, X. L., T. J. Schmit, and W. A. Smith, 1999: A nonlinear physical retrieval algorithm—Its application to the GOES-8/9 sounder. J. Appl. Meteor., 38, 501–513, doi: 10.1175/1520-0450(1999)038<0501:ANPRAI>2.0.CO;2.
Matricardi, M., 2010: A principal component based version of the RTTOV fast radiative transfer model. Quart. J. Roy. Meteor. Soc., 136, 1823–1835, doi: 10.1002/qj.v136:652.
Menzel, W. P., R. A. Frey, H. Zhang, et al., 2008: MODIS global cloud-top pressure and amount estimation: Algorithm description and results. J. Appl. Meteor. Climate, 47, 1175–1198, doi: 10.1175/2007JAMC1705.1.
Min, M., Y. Zhang, Z. G. Rong, et al., 2014: A method for monitoring the on-orbit performance of a satellite sensor infrared window band using oceanic drifters. Int. J. Remote Sens., 35, 382–400, doi: 10.1080/01431161.2013.871393.
Schmetz, J., P. Pili, S. Tjemkes, et al., 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83, 977–992, doi: 10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2.
Schmit, T. J., M. M. Gunshor, W. P. Menzel, et al., 2005: Introducing the next-generation advanced baseline imager on GOESR. Bull. Amer. Meteor. So,c. 86, 1079–1096, doi: 10.1175/BAMS-86-8-1079.
Schmit, T. J., J. Li, J. L. Li, et al., 2008: The GOES-R advanced baseline imager and the continuation of current sounder products. J. Appl. Meteor. Climate, 47, 2696–2711, doi: 10.1175/2008JAMC1858.1.
Stuhlmann, R., A. Rodriguez, S. Tjemkes, et al., 2005: Plans for EUMETSAT’s Third Generation Meteosat geostationary satellite programme. Adv. Space Res,. 36, 975–981, doi: 10.1016/j.asr.2005.03.091.
Susskind, J., C. D. Barnet, and J. M. Blaisdell, 2003: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens., 41, 390–409, doi: 10.1109/TGRS.2002.808236.
Wan, Z. M., 2008: New refinements and validation of the MODIS land–surface temperature/emissivity products. Remote Sens. Environ., 112, 59–74, doi: 10.1016/j.rse.2006.06.026.
Wang, M. H., and M. D. King, 1997: Correction of Rayleigh scattering effects in cloud optical thickness retrievals. J. Geophys. Res., 102, 25915–25926, doi: 10.1029/97JD02225.
Yang, J., P. Zhang, N. M. Lu, et al., 2012: Improvements on global meteorological observations from the current Fengyun 3 satellites and beyond. Int. J. Digit. Earth, 5, 251–265, doi: 10.1080/17538947.2012.658666.
Yang, J., Z. Zhang, and C. Wei, 2017: Introducing the new generation of Chinese geostationary weather satellites—Fengyun 4 (FY-4). Bull. Amer. Meteor. Soc., doi: 10.1175/BAMS-D-16-0065.1, in press.
Yu, Y. Y., D. Tarpley, J. L. Privette, et al., 2009: Developing algorithm for operational GOES-R land surface temperature product. IEEE Trans. Geosci. Remote Sens., 47, 936–951, doi: 10.1109/TGRS.2008.2006180.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the National Natural Science Foundation (41405035, 41571348, and 41405038) and China Meteorological Administration Special Public Welfare Research Fund (GYHY201406011 and GYHY201506074).
Rights and permissions
About this article
Cite this article
Min, M., Wu, C., Li, C. et al. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. J Meteorol Res 31, 708–719 (2017). https://doi.org/10.1007/s13351-017-6161-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13351-017-6161-z