[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Co-delivery of indomethacin and uricase as a new strategy for inflammatory diseases associated with high uric acid

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Uric acid is the final metabolite in humans. High level of uric acid chronically induces urate deposition, aggravates kidney damage, and concomitantly causes an increase in inflammatory factors. Alleviating acute inflammation and decreasing uric acid levels are the key points in the treatment of inflammatory diseases associated with high uric acid. However, a drug delivery system that combines anti-inflammatory and uric acid reduction functions at the same time remains a challenge to be settled. Here, we designed a nanocrystal-based co-delivery platform, IND Nplex, characterized by loading of indomethacin (IND) and uricase. Compared with free IND or uricase, IND Nplex possessed a better anti-inflammatory effect by restraining the release of inflammation-related factors in vitro. In addition, pharmacokinetic and biodistribution studies revealed that IND Nplex significantly prolonged the retention time in vivo and was more concentrated in the kidney. In acute gouty arthritis model rats, IND Nplex markedly relieved ankle joint swelling and mitigated synovial inflammation. In acute kidney injury model rats, IND Nplex indicated better biocompatibility and significant amelioration of renal fibrosis. Moreover, IND Nplex showed the effect of anti-inflammatory and improved renal function via determination of inflammatory factors and biochemical markers in the serum and kidney. In conclusion, these results indicate that IND Nplex exerts anti-inflammatory activity and uric acid–lowering effect and could become a promising candidate for the treatment of uric acid–related diseases.

Graphical Abstract

In this study, a stable neutral co-delivery platform (IND Nplex) was fabricated by using a co-delivery strategy, allowing for a combination of the anti-inflammation drug IND and the metabolic enzyme uricase. IND Nplex showed a good therapeutic effect on rats with acute gouty arthritis or acute kidney injury due to the dual effects of anti-inflammatory and uric acid lowering. This platform provided a novel strategy for high uric acid–related illnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

The datasets used or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Davies KJ, Sevanian A, Muakkassah-Kelly SF, Hochstein P. Uric acid-iron ion complexes. A new aspect of the antioxidant functions of uric acid. Biochem J. 1986;235(3):747–54. https://doi.org/10.1042/bj2350747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Furuhashi M. New insights into purine metabolism in metabolic diseases: role of xanthine oxidoreductase activity. Am J Physiol-Endo M. 2020. https://doi.org/10.1152/ajpendo.00378.2020.

    Article  Google Scholar 

  3. Yanai H, Adachi H, Hakoshima M, Katsuyama H. Molecular biological and clinical understanding of the pathophysiology and treatments of hyperuricemia and its association with metabolic syndrome, cardiovascular diseases and chronic kidney disease. Int J Mol Sci. 2021;22(17):9221. https://doi.org/10.3390/ijms22179221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Álvarez-Lario B, Macarrón-Vicente J. Uric acid and evolution. Rheumatol. 2010;49(11):2010–5. https://doi.org/10.1093/rheumatology/keq204.

    Article  CAS  Google Scholar 

  5. Hibi T, Kume A, Kawamura A, Itoh T, Fukada H, Nishiya Y. Hyperstabilization of tetrameric Bacillus sp. TB-90 urate oxidase by introducing disulfide bonds through structural plasticity. Biochemistry. 2016;55(4):724–32. https://doi.org/10.1021/acs.biochem.5b01119.

    Article  CAS  PubMed  Google Scholar 

  6. Maruhashi T, Hisatome I, Kihara Y, Higashi Y. Hyperuricemia and endothelial function: from molecular background to clinical perspectives. Atherosclerosis. 2018;278:226–31. https://doi.org/10.1016/j.atherosclerosis.2018.10.007.

    Article  CAS  PubMed  Google Scholar 

  7. Johnson RJ, Nakagawa T, Jalal D, Sánchez-Lozada LG, Kang D-H, Ritz E. Uric acid and chronic kidney disease: which is chasing which? Nephrol Dial Transpl. 2013;28(9):2221–8. https://doi.org/10.1093/ndt/gft029.

    Article  CAS  Google Scholar 

  8. Zhang H, Ma Y, Cao R, Wang G, Li S, Cao Y, Zhang H, Liu M, Liu G, Zhang J. Soluble uric acid induces myocardial damage through activating the NLRP3 inflammasome. J Cell Mol Med. 2020;24(15):8849–61. https://doi.org/10.1111/jcmm.15523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237–41. https://doi.org/10.1038/nature04516.

    Article  CAS  PubMed  Google Scholar 

  10. So AK, Martinon F. Inflammation in gout: mechanisms and therapeutic targets. Nat Rev Rheumatol. 2017;13(11):639–47. https://doi.org/10.1038/nrrheum.2017.155.

    Article  CAS  PubMed  Google Scholar 

  11. El Ridi R, Tallima H. Physiological functions and pathogenic potential of uric acid: a review. J Adv Res. 2017;8(5):487–93. https://doi.org/10.1016/j.jare.2017.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Braga TT, Foresto-Neto O, Camara NOS. The role of uric acid in inflammasome-mediated kidney injury. Curr Opin Nephrol Hypertens. 2020;29(4):423–31. https://doi.org/10.1097/MNH.0000000000000619.

    Article  CAS  PubMed  Google Scholar 

  13. Jalal DI. Hyperuricemia, the kidneys, and the spectrum of associated diseases: a narrative review. Curr Med Res Opin. 2016;32(11):1863–9. https://doi.org/10.1080/03007995.2016.1218840.

    Article  CAS  PubMed  Google Scholar 

  14. Dehlin M, Jacobsson L, Roddy E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat Rev Rheumatol. 2020;16(7):380–90. https://doi.org/10.1038/s41584-020-0441-1.

    Article  PubMed  Google Scholar 

  15. Jing J, Kielstein JT, Schultheiss UT, Sitter T, Titze SI, Schaeffner ES, McAdams-DeMarco M, Kronenberg F, Eckardt K-U, Köttgen A. Prevalence and correlates of gout in a large cohort of patients with chronic kidney disease: the German Chronic Kidney Disease (GCKD) study. Nephrol Dial Transplant. 2015;30(4):613–21. https://doi.org/10.1093/ndt/gfu352.

    Article  CAS  PubMed  Google Scholar 

  16. Peng Y, Ao M, Dong B, Jiang Y, Yu L, Chen Z, Hu C, Xu R. Anti-inflammatory effects of curcumin in the inflammatory diseases: status, limitations and countermeasures. Drug Des Dev Ther. 2021. https://doi.org/10.2147/DDDT.S327378.

    Article  Google Scholar 

  17. Klück V, Tim L, Janssen M, Comarniceanu A, Efdé M, Tengesdal IW, Schraa K, Cleophas MC, Scribner CL, Skouras DB. Dapansutrile, an oral selective NLRP3 inflammasome inhibitor, for treatment of gout flares: an open-label, dose-adaptive, proof-of-concept, phase 2a trial. Lancet Rheumatol. 2020;2(5):e270–80. https://doi.org/10.1016/S2665-9913(20)30065-5.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sárosi M-B. Binding of indomethacin methyl ester to cyclooxygenase-2. A computational study. J Mol Model. 2018;24(7):1–8. https://doi.org/10.1007/s00894-018-3686-8.

    Article  CAS  Google Scholar 

  19. Nalamachu S, Wortmann R. Role of indomethacin in acute pain and inflammation management: a review of the literature. Postgrad Med. 2014;126(4):92–7. https://doi.org/10.3810/pgm.2014.07.2787.

    Article  PubMed  Google Scholar 

  20. Liang X, Bittinger K, Li X, Abernethy DR, Bushman FD, FitzGerald GA. Bidirectional interactions between indomethacin and the murine intestinal microbiota. Elife. 2015;4:e08973. https://doi.org/10.7554/eLife.08973.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tominaga T, Omori S, Awazu M. Hypertension in a preterm after indomethacin use for patent ductus arteriosus. J Pediatric Nephrol. 2020;33(2):139–42. https://doi.org/10.3165/jjpn.cr.2019.0170.

    Article  Google Scholar 

  22. White WB, Saag KG, Becker MA, Borer JS, Gorelick PB, Whelton A, Hunt B, Castillo M, Gunawardhana L. Cardiovascular safety of febuxostat or allopurinol in patients with gout. N Engl J Med. 2018;378(13):1200–10. https://doi.org/10.1056/NEJMoa1710895.

    Article  CAS  PubMed  Google Scholar 

  23. Terkeltaub R, Saag KG, Goldfarb DS, Baumgartner S, Schechter BM, Valiyil R, Jalal D, Pillinger M, White WB. Integrated safety studies of the urate reabsorption inhibitor lesinurad in treatment of gout. Rheumatology. 2019;58(1):61–9. https://doi.org/10.1093/rheumatology/key245.

    Article  CAS  PubMed  Google Scholar 

  24. Dong Y, Zhao T, Ai W, Zalloum WA, Kang D, Wu T, Liu X, Zhan P. Novel urate transporter 1 (URAT1) inhibitors: a review of recent patent literature (2016–2019). Expert Opin Ther Pat. 2019;29(11):871–9. https://doi.org/10.1080/13543776.2019.1676727.

    Article  CAS  PubMed  Google Scholar 

  25. Sundy JS, Baraf HS, Yood RA, Edwards NL, Gutierrez-Urena SR, Treadwell EL, Vázquez-Mellado J, White WB, Lipsky PE, Horowitz Z. Efficacy and tolerability of pegloticase for the treatment of chronic gout in patients refractory to conventional treatment: two randomized controlled trials. JAMA. 2011;306(7):711–20. https://doi.org/10.1001/jama.2011.1169.

    Article  CAS  PubMed  Google Scholar 

  26. Reinders MK, Tim L. New advances in the treatment of gout: review of pegloticase. Ther Clin Risk Manag. 2010;6:543. https://doi.org/10.2147/TCRM.S6043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery technologies. Nat Biomed Eng. 2021;5(9):951–67. https://doi.org/10.1038/s41551-021-00698-w.

    Article  PubMed  Google Scholar 

  28. Pillinger MH, Mandell BF. Therapeutic approaches in the treatment of gout. Semin Arthritis Rheum: Elsevier; 2020. p. S24–30.

    Google Scholar 

  29. Stamp LK, Farquhar H. Treatment advances in gout. Best Prac Res Clin Rheumatol. 2021;35(4):101719. https://doi.org/10.1016/j.berh.2021.101719.

    Article  Google Scholar 

  30. Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine. 2019;14(1):93–126. https://doi.org/10.2217/nnm-2018-0120.

    Article  CAS  PubMed  Google Scholar 

  31. Jin B-K, Odongo S, Radwanska M, Magez S. Nanobodies: a review of generation, diagnostics and therapeutics. Int J Mol Sci. 2023;24(6):5994. https://doi.org/10.3390/ijms24065994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J. The big picture on small medicine: the state of nanomedicine products approved for use or in clinical trials. Nanomed-Nanotechnol. 2013;9(1):1. https://doi.org/10.1016/j.nano.2012.05.013.

    Article  CAS  Google Scholar 

  33. Rai MF, Pham CT. Intra-articular drug delivery systems for joint diseases. Curr Opin Pharmacol. 2018;40:67–73. https://doi.org/10.1016/j.coph.2018.03.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kraus V, Conaghan PG, Aazami H, Mehra P, Kivitz A, Lufkin J, Hauben J, Johnson J, Bodick N. Synovial and systemic pharmacokinetics (PK) of triamcinolone acetonide (TA) following intra-articular (IA) injection of an extended-release microsphere-based formulation (FX006) or standard crystalline suspension in patients with knee osteoarthritis (OA). Osteoarthr Cartil. 2018;26(1):34–42. https://doi.org/10.1016/j.joca.2017.10.003.

    Article  CAS  Google Scholar 

  35. Bodick N, Lufkin J, Willwerth C, Kumar A, Bolognese J, Schoonmaker C, Ballal R, Hunter D, Clayman M. An intra-articular, extended-release formulation of triamcinolone acetonide prolongs and amplifies analgesic effect in patients with osteoarthritis of the knee: a randomized clinical trial. JBJS. 2015;97(11):877–88. https://doi.org/10.2106/JBJS.N.00918.

    Article  Google Scholar 

  36. Keam SJ. Ozoralizumab: first approval. Drugs. 2023;83(1):87–92. https://doi.org/10.1007/s40265-022-01821-0.

    Article  CAS  PubMed  Google Scholar 

  37. Xiong Y, Guo D, Wang L, Zheng X, Zhang Y, Chen J. Development of nobiliside A loaded liposomal formulation using response surface methodology. Int J Pharm. 2009;371(1–2):197–203. https://doi.org/10.1016/j.ijpharm.2008.12.031.

    Article  CAS  PubMed  Google Scholar 

  38. Agnoletti M, Rodríguez-Rodríguez C, Kłodzińska SN, Esposito TV, Saatchi K, Mørck Nielsen H, Häfeli UO. Monosized polymeric microspheres designed for passive lung targeting: biodistribution and pharmacokinetics after intravenous administration. ACS Nano. 2020;14(6):6693–706. https://doi.org/10.1021/acsnano.9b09773.

    Article  CAS  PubMed  Google Scholar 

  39. Chandrasekar D, Sistla R, Ahmad FJ, Khar RK, Diwan PV. The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats. Biomaterials. 2007;28(3):504–12. https://doi.org/10.1016/j.biomaterials.2006.07.046.

    Article  CAS  PubMed  Google Scholar 

  40. He M, Hu C, Chen M, Gao Q, Li L, Tian W. Effects of Gentiopicroside on activation of NLRP3 inflammasome in acute gouty arthritis mice induced by MSU. J Nat Med. 2022;76:178–87. https://doi.org/10.1007/s11418-021-01571-5.

    Article  CAS  PubMed  Google Scholar 

  41. Wang Y, Zhu W, Lu D, Zhang C, Wang Y. Tetrahydropalmatine attenuates MSU crystal-induced gouty arthritis by inhibiting ROS-mediated NLRP3 inflammasome activation. Int Immunopharmacol. 2021;100:108107. https://doi.org/10.1016/j.intimp.2021.108107.

    Article  CAS  PubMed  Google Scholar 

  42. Feng Y, Sun F, Gao Y, Yang J, Wu G, Lin S, Hu J. Taurine decreased uric acid levels in hyperuricemic rats and alleviated kidney injury. Biochem Biophys Res Commun. 2017;489(3):312–8. https://doi.org/10.1016/j.bbrc.2017.05.139.

    Article  CAS  PubMed  Google Scholar 

  43. Li N, Amatjan M, He P, Zhang B, Mai X, Jiang Q, Xie H, Shao X. Integration of network pharmacology and intestinal flora to investigate the mechanism of action of Chinese herbal Cichorium intybus formula in attenuating adenine and ethambutol hydrochloride-induced hyperuricemic nephropathy in rats. Pharm Biol. 2022;60(1):2338–54. https://doi.org/10.1080/13880209.2022.2147551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Giraud M-N, Motta C, Romero JJ, Bommelaer G, Lichtenberger LM. Interaction of indomethacin and naproxen with gastric surface-active phospholipids: a possible mechanism for the gastric toxicity of nonsteroidal anti-inflammatory drugs (NSAIDs). Biochem Pharmacol. 1999;57(3):247–54. https://doi.org/10.1016/S0006-2952(98)00303-7.

    Article  CAS  PubMed  Google Scholar 

  45. Takeuchi K. Pathogenesis of NSAID-induced gastric damage: importance of cyclooxygenase inhibition and gastric hypermotility. World J Gastroenterol. 2012;18(18):2147. https://doi.org/10.3748/wjg.v18.i18.2147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kimura Y, Yanagida T, Onda A, Tsukui D, Hosoyamada M, Kono H. Soluble uric acid promotes atherosclerosis via AMPK (AMP-activated protein kinase)-mediated inflammation. Arterioscler Throm Vasc Biol. 2020;40(3):570–82. https://doi.org/10.1161/ATVBAHA.119.313224.

    Article  CAS  Google Scholar 

  47. Fillatreau S, Manfroi B, Dörner T. Toll-like receptor signalling in B cells during systemic lupus erythematosus. Nat Rev Rheumatol. 2021;17(2):98–108. https://doi.org/10.1038/s41584-020-00544-4.

    Article  CAS  PubMed  Google Scholar 

  48. Starr T, Bauler TJ, Malik-Kale P, Steele-Mortimer O. The phorbol 12-myristate-13-acetate differentiation protocol is critical to the interaction of THP-1 macrophages with Salmonella Typhimurium. PLoS ONE. 2018;13(3):e0193601. https://doi.org/10.1371/journal.pone.0193601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Van De Vlekkert D, Machado E, d’Azzo A. Analysis of generalized fibrosis in mouse tissue sections with Masson’s trichrome staining. Bio-protocol. 2020;10(10):e3629–e3629. https://doi.org/10.21769/BioProtoc.3629.

  50. Balakumar P, Alqahtani A, Khan NA, Mahadevan N, Dhanaraj SA. Mechanistic insights into hyperuricemia-associated renal abnormalities with special emphasis on epithelial-to-mesenchymal transition: pathologic implications and putative pharmacologic targets. Pharmacol Res. 2020;161:105209. https://doi.org/10.1016/j.phrs.2020.105209.

    Article  CAS  PubMed  Google Scholar 

  51. Kumar AU A, Browne LD, Li X, Adeeb F, Perez-Ruiz F, Fraser AD, Stack AG. Temporal trends in hyperuricaemia in the Irish health system from 2006–2014: a cohort study. PLoS ONE. 2018;13(5):e0198197. https://doi.org/10.1371/journal.pone.0198197.

    Article  CAS  Google Scholar 

  52. Li Y, Shen Z, Zhu B, Zhang H, Zhang X, Ding X. Demographic, regional and temporal trends of hyperuricemia epidemics in mainland China from 2000 to 2019: a systematic review and meta-analysis. Glob Health Action. 2021;14(1):1874652. https://doi.org/10.1080/16549716.2021.1874652.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wan Z, Song L, Hu L, Lei X, Huang Y, Lv Y. Temporal trends in hyperuricaemia among adults in Wuhan city, China, from 2010 to 2019: a cross-sectional study. BMJ Open. 2021;11(3):e043917. https://doi.org/10.1136/bmjopen-2020-043917.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Borghi C, Rosei EA, Bardin T, Dawson J, Dominiczak A, Kielstein JT, Manolis AJ, Perez-Ruiz F, Mancia G. Serum uric acid and the risk of cardiovascular and renal disease. J Hypertens. 2015;33(9):1729–41. https://doi.org/10.1097/HJH.0000000000000701.

    Article  CAS  PubMed  Google Scholar 

  55. Pontremoli R. The role of urate-lowering treatment on cardiovascular and renal disease: evidence from CARES, FAST, ALL-HEART, and FEATHER studies. Curr Med Res Opin. 2017;33(sup3):27–32. https://doi.org/10.1080/03007995.2017.1378523.

    Article  CAS  PubMed  Google Scholar 

  56. Borghi C, Agabiti-Rosei E, Johnson RJ, Kielstein JT, Lurbe E, Mancia G, Redon J, Stack AG, Tsioufis KP. Hyperuricaemia and gout in cardiovascular, metabolic and kidney disease. Eur J Intern Med. 2020;80:1–11. https://doi.org/10.1016/j.ejim.2020.07.006.

    Article  CAS  PubMed  Google Scholar 

  57. Hansildaar R, Vedder D, Baniaamam M, Tausche A-K, Gerritsen M, Nurmohamed MT. Cardiovascular risk in inflammatory arthritis: rheumatoid arthritis and gout. Lancet Rheumatol. 2021;3(1):e58–70. https://doi.org/10.1016/S2665-9913(20)30221-6.

    Article  CAS  PubMed  Google Scholar 

  58. Gong Z, Xia L, Xu R, Luo M, Deng H, Kang Z, Liu L, Liu Y, Zhang F, Shi J. The clinical effects of febuxostat alone or combined with arthroscopic surgery for gout: a single-center retrospective study. J Inflamm Res. 2021;14:4509. https://doi.org/10.2147/JIR.S329800.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Liu L, Liu X, Xin W, Zhou L, Huang B, Han C, Cao Z, Hua Z. A bacteria-based system expressing anti-TNF-α nanobody for enhanced cancer immunotherapy. Signal Transduct Target Ther. 2023;8(1):134. https://doi.org/10.1038/s41392-023-01364-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guo J, Yu Z, Das M, Huang L. Nano codelivery of oxaliplatin and folinic acid achieves synergistic chemo-immunotherapy with 5-fluorouracil for colorectal cancer and liver metastasis. ACS Nano. 2020;14(4):5075–89. https://doi.org/10.1021/acsnano.0c01676.

    Article  CAS  PubMed  Google Scholar 

  61. Gong G, Pan J, He Y, Shang J, Wang X, Zhang Y, Zhang G, Wang F, Zhao G, Guo J. Self-assembly of nanomicelles with rationally designed multifunctional building blocks for synergistic chemo-photodynamic therapy. Theranostics. 2022;12(5):2028. https://doi.org/10.7150/thno.68563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cao Z-T, Chen Z-Y, Sun C-Y, Li H-J, Wang H-X, Cheng Q-Q, Zuo Z-Q, Wang J-L, Liu Y-Z, Wang Y-C. Overcoming tumor resistance to cisplatin by cationic lipid-assisted prodrug nanoparticles. Biomaterials. 2016;94:9–19. https://doi.org/10.1016/j.biomaterials.2016.04.001.

    Article  CAS  PubMed  Google Scholar 

  63. Tang Z, Xiao Y, Kong N, Liu C, Chen W, Huang X, Xu D, Ouyang J, Feng C, Wang C. Nano-bio interfaces effect of two-dimensional nanomaterials and their applications in cancer immunotherapy. Acta Pharma Sin B. 2021;11(11):3447–64. https://doi.org/10.1016/j.apsb.2021.05.004.

    Article  CAS  Google Scholar 

  64. Gaurav I, Wang X, Thakur A, Iyaswamy A, Thakur S, Chen X, Kumar G, Li M, Yang Z. Peptide-conjugated nano delivery systems for therapy and diagnosis of cancer. Pharmaceutics. 2021;13(9):1433. https://doi.org/10.3390/pharmaceutics13091433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Han T, Wang M, Li W, An M, Fu H. Bmk9 and uricase nanoparticle complex for the treatment of gouty arthritis and uric acid nephropathy. J Biomed Nanotechnol. 2021;17(10):2071–84. https://doi.org/10.1166/jbn.2021.3168.

    Article  CAS  PubMed  Google Scholar 

  66. Cicero AF, Fogacci F, Kuwabara M, Borghi C. Therapeutic strategies for the treatment of chronic hyperuricemia: an evidence-based update. Medicina. 2021;57(1):58. https://doi.org/10.3390/medicina57010058.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the Public platform of the Pharmaceutical Animal Experimental Center for the use of living imaging system, and also thank Liuyi Zhong for her help with taking images.

Funding

This study was supported by the Jiangsu Funding Program for Excellent Postdoctoral Talent (2022ZB313).

Author information

Authors and Affiliations

Authors

Contributions

Chao Teng conceived and designed the research work. Jie Liu and Chenshi Lin performed the experiments and analyzed the results. Man Wu, Yingjie Wang, Shenyu Chen, Taiwang Yang, Chenlu Xie, Yue Kong, Wenliang Wu, and Jiaping Wang assisted in the conduct of the experiment and the writing of the article. Xiaonan Ma and Chao Teng co-wrote the paper. All of the authors discussed the results and commented on the manuscript. All of the authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Xiaonan Ma or Chao Teng.

Ethics declarations

Ethics approval and consent to participate

All the experimental protocols were approved by the Institutional Animal Care and Use Committee of China Pharmaceutical University (approval number 2019–06-005).

Consent for publication

Not applicable. No human studies have been performed in this research.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1560 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Lin, C., Wu, M. et al. Co-delivery of indomethacin and uricase as a new strategy for inflammatory diseases associated with high uric acid. Drug Deliv. and Transl. Res. 14, 1820–1838 (2024). https://doi.org/10.1007/s13346-023-01487-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01487-5

Keywords

Navigation