[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Virtual testing of aircraft structures

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

This paper will focus on the prediction of aircraft structural strength using virtual testing analysis methods. Virtual testing is a concept with several attributes and is to be understood as the simulation of aircraft structure using advanced nonlinear finite element analysis. It will involve the combination of analysis software, methods, people skills and experience to predict the actual aircraft structural strength with a high level of confidence. This is achieved through the creation and execution of a detailed nonlinear finite element analysis model of an aircraft structure, which represents as accurately as possible the actual physical behaviour when subjected to a wide range of loading scenarios. Creating a virtual representation of an aircraft structure presents the analysts with several significant challenges, including the creation of the complex finite element model that accurately represents the global aircraft structure, and then adding the significant detail in terms of material and construction required to make accurate failure predictions with confidence. An overview will be provided of the general principles used in the process of virtual testing of both metallic and composite aircraft structures. The paper will focus on the key challenges and enablers for future successful virtual testing demonstrations in an industrial context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Imbert, J.F.: Airbus, challenges in aircraft structure analysis. ESA/NAFEMS Seminar on Engineering Quality, verification and validation. Noordwijk, 6 December 2007

  2. Prior, A.: Dassault Systèmes, nonlinear simulation of large scale aircraft structures—implications for certification methodology and high performance computing infrastructure, NAFEMS World Congress, June 2009

  3. Prior, A.: Dassault Systèmes, simulating damage and failure in aircraft structures, RAeS Conference: challenges for the next generation-concept to disposal, October 14–16, 2008

  4. Brown, T.: Airbus, working to meet the challenges of next generation composite wing structural design. RAeS Conference: challenges for the next generation—concept to disposal, 14–16 Oct 2008

  5. European Aviation Safety Agency, Certification Specifications for Large Aeroplanes CS-25 Amendment 5. 5 Sept 2008

  6. Dávila, C., Camanho, P.P., Turon, A.: Effective simulation of delamination in aeronautical structures using shells and cohesive elements. J. Aircr. 45, 663–672 (2008)

    Article  Google Scholar 

  7. Krueger, R.: Virtual crack closure technique: history, approach, and applications. Appl. Mech. Rev. 57(2), 109–143 (2004)

    Article  MathSciNet  Google Scholar 

  8. Krueger, R., Ratcliffe, J.G., Minguet, P.J.: Panel stiffener debonding analysis using A shell/3D modeling technique. Compos. Sci. Technol. 69, 2352–2362 (2009)

    Article  Google Scholar 

  9. Krueger, R.: An approach to assess delamination propagation simulation capabilities in commercial finite element codes, NASA/TM-2008-215123 (2008)

  10. Gutkin, R., Pinho, S.T., Robinson, P., Curtis, P.T.: On the transition from shear-driven fibre compressive failure to fibre kinking in notched CFRP laminates under longitudinal compression. Compos. Sci. Technol. 70, 1223 (2010)

    Article  Google Scholar 

  11. Pinho, S. T., Dávila, C. G., Camanho, P. P., Iannucci, L., Robinson, P.: “NASA/TM-2005-213530” NASA (2005)

  12. Camanho, P.P., Dávila, C.G., Pinho, S.T., Iannucci, L., Robinson, P.: Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear. Compos. Part A: Appl. Sci. Manuf. 37, 165 (2006)

    Article  Google Scholar 

  13. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999)

    Article  MATH  Google Scholar 

  14. Ladeveze, P., Le Dantec, E.: Damage modelling of the elementary ply for laminated composites. Compos. Sci. Technol. 43, 257 (1992)

    Article  Google Scholar 

  15. Ladevèze, P., Lubineau, G., Marsal, D.: Towards a bridge between the micro- and mesomechanics of delamination for laminated composites. Compos. Sci. Technol. 66(6), 698–712 (2006)

    Article  Google Scholar 

  16. Camanho, P.P., Dávila, C.G., Pinho, S.T.: Fracture analysis of composite co-cured structural joints using decohesion elements. Fatigue Fracture Eng. Mater. Struct. 27(9), 745–757 (2004)

    Article  Google Scholar 

  17. Pinho, S.T., Dávila, C.G., Camanho, P.P., Iannucci, L., Robinson, P.: Failure models and criteria for FRP under in-plane or three-dimensional stress states including shear non-linearity, NASA/TM-2005-213530. NASA Langley Research Center, Hampton, (2005)

  18. Moes, N., Belytschko, T.: Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 69(7), 813–833 (2002)

    Article  Google Scholar 

  19. Meschke, G., Dumstorff, P.: Energy-based modeling of cohesive and cohesionless cracks via X-FEM. Comput. Methods Appl. Mech. Eng. 196(21–24), 2338–2357 (2007)

    Article  MATH  Google Scholar 

  20. Hettich, T., Hund, A., Ramm, E.: Modeling of failure in composites by X-FEM and level sets within a multiscale framework. Comput. Methods Appl. Mech. Eng. 197(5), 414–424 (2008)

    Article  MATH  Google Scholar 

  21. Kenane, M., Benzeggagh, M.L.: Mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites under fatigue loading. Compos. Sci. Technol. 57(5), 597–605 (1997)

    Article  Google Scholar 

  22. FP6 MUSCA non-linear static multi-scale analysis of large aero-structures: http://cordis.europa.eu/fetch?CALLER=FP6_PROJ&ACTION=D&DOC=15&CAT=PROJ&QUERY=0125d43f7184:23ab:79c5c95f&RCN=75782

  23. FP7 MAAXIMUS—more affordable aircraft through extended, integrated and mature numerical sizing: http://www.maaximus.eu/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten G. Ostergaard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostergaard, M.G., Ibbotson, A.R., Roux, O.L. et al. Virtual testing of aircraft structures. CEAS Aeronaut J 1, 83–103 (2011). https://doi.org/10.1007/s13272-011-0004-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-011-0004-x

Keywords

Navigation