[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Highly enhanced mechanical properties of polypropylene-long carbon fiber composites by a combined method of coupling agent and surface modification of long carbon fiber

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The aim of this study was to enhance the mechanical strengths of polypropylene/long carbon fiber thermoplastic (PP/LCFT) composite by increasing the adhesion between the PP matrix and the long carbon fiber (LCF). Bi-functional group grafted polypropylene (BFPP) was used as a coupling agent with surface modified LCF (SMLCF) in a long fiber thermoplastic (LFT) melt impregnation system to increase the interaction between the PP matrix and the LCF. The BFPP was produced by melt compounding of maleic anhydride grafted polypropylene (MAPP) and polyether amine (PEA). The surface modified LCF (SMLCF) was produced by dipping LCF into a sizing bath with 3-methacryloxypropyltrimethoxysilane (MPTS) to obtain oxygen functional groups. The composites were produced with a LFT melt impregnation system with PP, BFPP, and SMLCF. Tensile and flexural tests and scanning electron microscopy (SEM) results of the PP/BFPP/SMLCFT composite showed significantly enhanced mechanical strengths, compared with those of the common PP/LCF composite with a conventional maleic anhydride grafted polypropylene (MAPP) coupling agent. These improvements in mechanical properties are attributed to better fiber/matrix interfacial adhesion, as confirmed by micro droplet specimen tests and SEM micrographs of the fracture surface after inter laminar shear testing. The PP/SMLCFT composite with BFPP 5 wt% as coupling agent showed the highest tensile strength and flexural strength, which increased by 1.5 times and 1.7 times respectively, compared with PP/LCFT with a conventional MAPP coupling agent. The composite produced by this effective combination method of a coupling agent and surface modification of long carbon fiber can potentially be applied to automobile materials, leading to the replacement of metal parts and car weight reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. I. Taketa, K. Yamaguchi, E. Wadahara, M. Yamasaki, T. Sekido, and A. Kitabo, The 12th US-Japan Conference on Composite Materials, 411 (2006).

    Google Scholar 

  2. S. D. Bartus and U. K. Vaidya, Compos. Struct., 67, 263 (2005).

    Article  Google Scholar 

  3. U. K. Vaidya and R. Sriram, International SMPE 2004 Conference Proceedings, 49, 757 (2004).

    Google Scholar 

  4. J. B. Donnet and R. C. Bansal, Carbon Fibers, 2nd ed., Marcel Dekker, Inc., New York, 1990.

    Google Scholar 

  5. S.-Y. Fu, B. Lauke, E. Mader, C.-Y. Yue, and X. Hu, Compos. Part A: Appl. Sci. Manuf., 31, 1117 (2000).

    Article  Google Scholar 

  6. Q. Li and L. M. Matuana, J. Thermoplast. Compos. Mater., 16, 551 (2003).

    Article  CAS  Google Scholar 

  7. M. Kazayawoko, J. J. Balatinecz and R. T. Woodhams, J. Appl. Polym. Sci., 66, 1163 (1997).

    Article  CAS  Google Scholar 

  8. Z. Xu, L. Chen, Y. Huang, J. Li, X. Wu, X. Li, and Y. Jiao, Eur. Polym. J., 44, 494 (2008).

    Article  CAS  Google Scholar 

  9. M. H. Choi, B. H. Jeon, and I. J. Chung, Polymer, 41, 3243 (2000).

    Article  CAS  Google Scholar 

  10. M. A. Montes-Moran, F. Hattum, J. P. Nunes, and A. Martinez, Carbon, 43, 21795 (2005).

    Article  Google Scholar 

  11. H. C. Wen, K. Yang, and K. L. Ou, Surf. Coat. Technol., 200, 3166 (2006).

    Article  CAS  Google Scholar 

  12. S. Chand, J. Mater. Sci., 35, 1303 (2000).

    Article  CAS  Google Scholar 

  13. A. R. Sanadi, D. F. Caulfield, and R. E. Jacobson, Ind. Eng. Chem. Res., 34, 1889 (1995).

    Article  CAS  Google Scholar 

  14. G. Beckermann and K. Pickering, The Processing and Improvement of Hemp Fibre Reinforced Biocomposite Materials, ICCM-15, Durban, 2005.

    Google Scholar 

  15. R. M. Liu and D. K. Liang, Mater. Des., 31, 994 (2010).

    Article  CAS  Google Scholar 

  16. H. Guo, Y. D. Huang, L. Liu, and X. H. Shi, Mater. Des., 31, 1186 (2010).

    Article  CAS  Google Scholar 

  17. F. Rezaei, R. Yunus, N. A. Ibrahim, Mater. Des., 30, 260 (2009).

    Article  CAS  Google Scholar 

  18. Y. P. Bai, Z. Wang, and L. Q. Feng, Mater. Des., 31, 1613 (2010).

    Article  CAS  Google Scholar 

  19. M. K. Seo and S. J. Park, J. Colloid Interface Sci., 330, 237 (2009).

    Article  CAS  Google Scholar 

  20. J. Li, Appl. Surf. Sci., 255, 2822 (2008).

    Article  CAS  Google Scholar 

  21. X. R. Zhang, X. Q. Pei, J. P. Zhang, and Q. H. Wang, Colloids Surf. A: Physicochem. Eng. Asp., 339, 7 (2009).

    Article  CAS  Google Scholar 

  22. S. J. Park and M. H. Kim, J. Mater. Sci., 35, 1901 (2000).

    Article  CAS  Google Scholar 

  23. A. Fjeldly, T. Olsen, J. H. Rysjedal, and J. E. Berg, Compos. Part A, 32, 373 (2001).

    Article  Google Scholar 

  24. T. Ramanathan, A. Bismarck, E. Schultz, and K. Subramamian, Compos. Sci. Technol., 61, 599 (2001).

    Article  CAS  Google Scholar 

  25. M. C. R. Paiva, C. A. Bernardo, and M. Nardin, Carbon, 38, 1323 (2000).

    Article  CAS  Google Scholar 

  26. A. Fukunaga and S. Veda, Compos. Sci. Technol., 60, 249 (2000).

    Article  CAS  Google Scholar 

  27. D. M. Blackketter, D. Upadhyaya, T. R. King, and J. A. King, Polym. Compos., 14, 430 (1993).

    Article  CAS  Google Scholar 

  28. S. Yumitori, D. Wang, and F. R. Jones, Composites, 25, 698 (1994).

    Article  CAS  Google Scholar 

  29. M. J. Reis, A. M. Botelhodorego, J. D. Lopesdasilva, and M. N. Soares, J. Mater. Sci., 30, 118 (1995).

    Article  CAS  Google Scholar 

  30. U. Zielke, K. J. Huttinger, and W. P. Hoffman, Carbon, 32, 1015 (1996).

    Article  Google Scholar 

  31. R. B. Guan, Y. G. Yang, and J. T. Zheng, New Carbon Mater., 17, 49 (2002).

    CAS  Google Scholar 

  32. D. Del-Duca, in Polypropylene Handbook, 2nd ed., N. Pasquini, Ed., Hanser Publishers, Munich, 2005, p 314.

  33. K. H. Wong, D. Syed Mohammed, S. J. Pickering, and R. Brooks, Compos. Sci. Technol., 834, 72 (2012).

    Google Scholar 

  34. W. K. Choi, B. J. Kim, B. G. Min, K. M. Bae, and S. J. Park, Elast. Compos., 45, 2 (2010).

    CAS  Google Scholar 

  35. B. Liua, Z. Liua, and X. Wangb, Polym. Test., 32, 724 (2013).

    Article  Google Scholar 

  36. U. N. Maiti, W. J. Lee, J. M. Lee, Y. Oh, J. Y. Kim, J. E. Kim, J. Shim, T. H. Han, and S. O. Kim, Adv. Mater., 26, 40 (2014).

    Article  CAS  Google Scholar 

  37. L. Lu, T. Xu, W. Chen, J. M. Lee, Z. Luo, I. H. Jung, H. I. Park, S. O. Kim, and L. Yu, Nano Lett., 13, 2365 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Tae Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, S.M., Jung, HT. Highly enhanced mechanical properties of polypropylene-long carbon fiber composites by a combined method of coupling agent and surface modification of long carbon fiber. Macromol. Res. 22, 1066–1073 (2014). https://doi.org/10.1007/s13233-014-2153-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2153-3

Keywords

Navigation