[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Electrospun poly(L-lactide) membranes containing a single drug or multiple drug system for antimicrobial wound dressings

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Micro- and nanofibrous electrospun poly(L-lactide) (PLA) and PLA/poly(ethylene glycol) (PEG) membranes containing diclofenac sodium (DS), lidocaine hydrochloride (LHC), benzalkonium chloride (BC), or combinations thereof (DS/LHC and DS/LHC/BC) have been developed. The addition of low molecular weight organic salts to the spinning PLA and PLA/PEG solutions results in increased conductivity and contributes to the preparation of membranes composed of fibers that are well-aligned with the collector rotation direction. The water contact angle values of the PLA and PLA/PEG membranes are characteristic of hydrophobic surfaces. The incorporation of LHC in the fibers does not lead to membrane hydrophilization. In contrast to LHC, other drugs or combinations thereof have led to the preparation of hydrophilic fibrous materials. The hydrophilization is due to the presence of DS or BC fragments or functional groups on the fibrous membrane surfaces as verified by X-ray photoelectron spectroscopy (XPS). As evidenced by the differential scanning calorimetric study and X-ray diffraction analysis data, the drugs incorporated in the fibers are in the amorphous state. The release profiles of DS, LHC, and BC from the PLA/drug and PLA/PEG/drug fibrous membranes depend on the drug nature and, in the case of BC, on the composition of the polymer scaffold as well. The release of DS and LHC from the PLA/DS/LHC and PLA/PEG/DS/LHC membranes is slower compared to that of the single drug-loaded membranes. This phenomenon has been attributed to an ionic interaction between the two drugs. Microbiological studies have demonstrated that the PLA/DS, PLA/BC, PLA/DS/LHC, and PLA/DS/LHC/BC membranes exhibit antibacterial activity against Staphylococcus aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. T. J. Sill and H. A. von Recum, Biomaterials, 29, 1989 (2008).

    Article  CAS  Google Scholar 

  2. P. Zahedi, I. Rezaeian, S.-O. Ranaei-Siadat, S.-H. Jafari, and P. Supaphol, Polym. Adv. Technol., 21, 77 (2010).

    CAS  Google Scholar 

  3. W. Cui, Y. Zhou, and J. Chang, Sci. Technol. Adv. Mater., 11, 1 (2010).

    Article  Google Scholar 

  4. M. Spasova, O. Stoilova, N. Manolova, G. Altankov, and I. Rashkov, J. Bioact. Compat. Polym., 22, 62 (2007).

    Article  CAS  Google Scholar 

  5. M. Spasova, D. Paneva, N. Manolova, P. Radenkov, and I. Rashkov, Macromol. Biosci., 8, 153 (2008).

    Article  CAS  Google Scholar 

  6. E. Yancheva, D. Paneva, N. Manolova, R. Mincheva, D. Danchev, P. Dubois, and I. Rashkov, Biomacromolecules, 11, 521 (2010).

    Article  CAS  Google Scholar 

  7. M. G. Ignatova, N. E. Manolova, R. A. Toshkova, I. B. Rashkov, E. G. Gardeva, L. S. Yossifova, and M. T. Alexandrov, Biomacromolecules, 11, 1633 (2010).

    Article  CAS  Google Scholar 

  8. K. Kanawung, K. Panitchanapan, S. Puangmalee, W. Utok, N. Kreua-Ongarjnukool, R. Rangkupan, C. Meechaisue, and P. Supaphol, Polym. J., 39, 369 (2007).

    Article  CAS  Google Scholar 

  9. L. Nikkola, J. Seppälä, A. Harlin, A. Ndreu, and N. Ashammakhi, J. Nanosci. Nanotechnol., 6, 3290 (2006).

    Article  CAS  Google Scholar 

  10. L. Tammaro, G. Russo, and V. Vittoria, J. Nanomater., 2009, 1 (2009).

    Article  Google Scholar 

  11. R. A. Thakur, C. A. Florek, J. Kohn, and B. B. Michniak, Int. J. Pharm., 364, 87 (2008).

    Article  CAS  Google Scholar 

  12. A. Toncheva, M. Spasova, D. Paneva, N. Manolova, and I. Rashkov, J. Bioact. Compat. Polym., 26, 161 (2011).

    Article  CAS  Google Scholar 

  13. M. Spasova, R. Mincheva, D. Paneva, N. Manolova, and I. Rashkov, J. Bioact. Compat. Polym., 21, 465 (2006).

    Article  CAS  Google Scholar 

  14. W. S. Rasband, Image J Software, National Institute of Health, Bethesda, Maryland, http://rsb.info.nih.gov/ij, 2006.

  15. M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, and J. H. Wendorff, Adv. Mater., 13, 70 (2001).

    Article  CAS  Google Scholar 

  16. I. K. Kwon, S. Kidoaki, and T. Matsuda, Biomaterials, 26, 3929 (2005).

    Article  CAS  Google Scholar 

  17. J. Zeng, X. Chen, Q. Liang, X. Xu, and X. Jing, Macromol. Biosci., 4, 1118 (2004).

    Article  CAS  Google Scholar 

  18. R. Inai, M. Kotaki, and S. Ramakrishna, Nanotechnology, 16, 208 (2005).

    Article  CAS  Google Scholar 

  19. H. Zhou, T. B. Green, and Y. L. Joo, Polymer, 47, 7497 (2006).

    Article  CAS  Google Scholar 

  20. M. Spasova, N. Manolova, D. Paneva, R. Mincheva, P. Dubois, I. Rashkov, V. Maximova, and D. Danchev, Biomacromolecules, 11, 151 (2010).

    Article  CAS  Google Scholar 

  21. W. Cui, X. Zhu, Y. Yang, X. Li, and Y. Jin, Mater. Sci. Eng. C, 29, 1869 (2009).

    Article  CAS  Google Scholar 

  22. X. Xu, L. Yang, X. Xu, X. Wang, X. Chen, Q. Liang, J. Zeng, and X. Jing, J. Control. Release, 108, 33 (2005).

    Article  CAS  Google Scholar 

  23. M. V. Natu, H. C. de Sousa, and M. H. Gil, Int. J. Pharm., 397, 50 (2010).

    Article  CAS  Google Scholar 

  24. A. Wei, J. Wang, X. Wang, Q. Wei, M. Ge, and D. Hou, J. Appl. Polym. Sci., 118, 346 (2010).

    CAS  Google Scholar 

  25. S. R. Bhattarai, N. Bhattarai, P. Viswanathamurthi, H. K. Yi, P. H. Hwang, and H. Y. Kim, J. Biomed. Mater. Res., 78A, 247 (2006).

    Article  CAS  Google Scholar 

  26. W. Cui, X. Li, S. Zhou, and J. Weng, Polym. Degrad. Stab., 93, 731 (2008).

    Article  CAS  Google Scholar 

  27. P. Taepaiboon, U. Rungsardthong, and P. Supaphol, Nanotechnology, 17, 2317 (2006).

    Article  CAS  Google Scholar 

  28. M. Kincl, M. Meleh, M. Veber, and F. Vrečerd, Acta Chim. Slov., 51, 409 (2004).

    CAS  Google Scholar 

  29. H. Sjöberg, K. Karami, P. Beronius, and L.-O. Sundelöf, Int. J. Pharm., 141, 63 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iliya Rashkov.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toncheva, A., Paneva, D., Manolova, N. et al. Electrospun poly(L-lactide) membranes containing a single drug or multiple drug system for antimicrobial wound dressings. Macromol. Res. 19, 1310–1319 (2011). https://doi.org/10.1007/s13233-011-1206-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-011-1206-0

Keywords

Navigation