[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

On Discrete-Time Replicator Equations with Nonlinear Payoff Functions

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

An evolutionary game is usually identified by a smooth (possibly nonlinear) payoff function. We propose a model of evolutionary game in which for any two different pure strategies, a nonlinear payoff function of a pure strategy which is frequent in number is better/worse than other one. In order to observe some evolutionary bifurcation diagram, we also control the nonlinear payoff function in two different regimes: positive and negative. One of the interesting feature of the model is that if we switch a controlling parameter from positive to negative regime then a set of local evolutionarily stable strategies (ESSs) changes from one set to another one. We show that the Folk Theorem of Evolutionary Game Theory is true for a discrete-time replicator equation governed by the proposed nonlinear payoff function. In the long-run time, the following scenario can be observed: (i) in the positive regime, the active dominating pure strategies will outcompete other strategies and only they will survive forever; (ii) in the negative regime, all active pure strategies will coexist together and they will survive forever. As an application, we also show that the nonlinear payoff functions defined by discrete population models for a single species such as Beverton–Holt’s model, Hassell’s model, Maynard Smith–Slatkin’s model, Ricker’s model, Skellam’s model satisfy the hypothesis of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams MR, Sornborger AT (2007) Analysis of a certain class of replicator equations. J Math Biol 54:357–384

    Article  MathSciNet  MATH  Google Scholar 

  2. Balkenborg D, Schlag K (2001) Evolutionarily stable sets. Game Theory 29:571–595

    Article  MathSciNet  MATH  Google Scholar 

  3. Beckmann M, McGuire CB, Winsten CB (1956) Studies in the economics of transportation. Yale University Press, New Haven

    Google Scholar 

  4. Benaim M, Hofbauer J, Sorin S (2012) Perturbations of set-valued dynamical systems, with applications to game theory. Dyn Games Appl 2(2):195–205

    Article  MathSciNet  MATH  Google Scholar 

  5. Beverton RJH, Holt SJ (1957) On the dynamics of exploited fish populations. Fisheries investigations, series 2, vol 19. H.M. Stationery Office, London

    Google Scholar 

  6. Cressman R (1992) The stability concept of evolutionary game theory: a dynamic approach. Springer, Berlin

    Book  MATH  Google Scholar 

  7. Cressman R (2003) Evolutionary dynamics and extensive form games. MIT Press, Cambridge

    Book  MATH  Google Scholar 

  8. Cooney DB (2019) The replicator dynamics for multilevel selection in evolutionary games. J Math Biol 79:101–154

    Article  MathSciNet  MATH  Google Scholar 

  9. Duong MH, Han TA (2020) On equilibrium properties of the replicator–mutator equation in deterministic and random games. Dyn Games Appl 10:641–663

    Article  MathSciNet  MATH  Google Scholar 

  10. Friedman D (1991) Evolutionary games in economics. Econometrica 59(3):637–666

    Article  MathSciNet  MATH  Google Scholar 

  11. Friedman D (1998) On economic applications of evolutionary game theory. J Evol Econ 8(1):15–43

    Article  Google Scholar 

  12. Ganikhodjaev N, Saburov M, Jamilov U (2013) Mendelian and non-Mendelian quadratic operators. Appl Math Inf Sci 7:1721–1729

    Article  MathSciNet  Google Scholar 

  13. Ganikhodjaev N, Saburov M, Nawi AM (2014) Mutation and chaos in nonlinear models of heredity. Sci World J 2014:1–11

    Google Scholar 

  14. Ganikhodzhaev RN, Saburov M (2008) A generalized model of the nonlinear operators of Volterra type and Lyapunov functions. J Sib Fed Univ Math Phys 1(2):188–196

    MATH  Google Scholar 

  15. Garay J, Cressman R, Mori TF, Varga T (2018) The ESS and replicator equation in matrix games under time constraints. J Math Biol 76:1951–1973

    Article  MathSciNet  MATH  Google Scholar 

  16. Geritz SAH, Kisdi É (2004) On the mechanistic underpinning of discrete-time population models with complex dynamics. J Theor Biol 228(2):261–269

    Article  MathSciNet  MATH  Google Scholar 

  17. Gomes DA, Saude J (2021) A mean-field game approach to price formation. Dyn Games Appl 11:29–53

    Article  MathSciNet  MATH  Google Scholar 

  18. Hassell MP (1975) Density-dependence in single-species populations. J Anim Ecol 44:283–295

    Article  Google Scholar 

  19. Hofbauer J (1996) Evolutionary dynamics for bimatrix games: a Hamiltonian system? J Math Biol 34:675–688

    Article  MathSciNet  MATH  Google Scholar 

  20. Hofbauer J (2018) Minmax via Replicator Dynamics. Dyn Games Appl 8:637–640

    Article  MathSciNet  MATH  Google Scholar 

  21. Hofbauer J, Sandholm WH (2009) Stable games and their dynamics. J Econ Theory 144(4):1665–1693

    Article  MathSciNet  MATH  Google Scholar 

  22. Hofbauer J, Sigmund K (1988) The theory of evolution and dynamical systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  23. Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  24. Hofbauer J, Sigmund K (2003) Evolutionary game dynamics. Bull Am Math Soc 40(4):479–519

    Article  MathSciNet  MATH  Google Scholar 

  25. Jamilov U, Khamraev A, Ladra M (2018) On a Volterra cubic stochastic operator. Bull Math Biol 80:319–334

    Article  MathSciNet  MATH  Google Scholar 

  26. Maynard Smith J (1974) The theory of games and the evolution of animal conflicts. J Theor Biol 47(1):209–221

    Article  MathSciNet  Google Scholar 

  27. Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  28. Maynard Smith J, Price GR (1973) The logic of animal conflict. Nature 246(5427):15–18

    Article  MATH  Google Scholar 

  29. Maynard Smith J, Slatkin M (1973) The stability of predator–prey systems. Ecology 54:384–391

    Article  Google Scholar 

  30. Mitrinovic DS, Pecaric JE, Fink AM (1993) Classical and new inequalities in analysis. Mathematics and its applications, vol 61. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  31. Mukhamedov F, Saburov M (2010) On homotopy of Volterrian quadratic stochastic operator. Appl Math Inf Sci 4:47–62

    MathSciNet  MATH  Google Scholar 

  32. Mukhamedov F, Saburov M (2014) On dynamics of Lotka-Volterra type operators. Bull Malays Math Sci Soc 37:59–64

    MathSciNet  MATH  Google Scholar 

  33. Mukhamedov F, Saburov M (2017) Stability and monotonicity of Lotka-Volterra type operators. Qual Theory Dyn Syst 16:249–267

    Article  MathSciNet  MATH  Google Scholar 

  34. Nash JF (1950) Equilibrium points in n-person games. Proc Natl Acad Sci USA 36(1):48–49

    Article  MathSciNet  MATH  Google Scholar 

  35. Nash JF (1951) Non-cooperative games. Ann Math 54:287–295

    Article  MathSciNet  MATH  Google Scholar 

  36. Nowak MA (2006) Evolutionary dynamics: exploring the equations of life. Harvard University Press, Cambridge

    Book  MATH  Google Scholar 

  37. Pohley H-J, Thomas B (1983) Non-linear ESS models and frequency dependent selection. Biosystems 16:87–100

    Article  Google Scholar 

  38. Pontz M, Hofbauer J, Burger R (2018) Evolutionary dynamics in the two-locus two-allele model with weak selection. J Math Biol 76:151–203

    Article  MathSciNet  MATH  Google Scholar 

  39. Ricker WE (1954) Stock and recruitment. J Fish Res Bd Canada 11:559–623

    Article  Google Scholar 

  40. Rozikov U, Hamraev A (2004) On a cubic operator defined in finite dimensional simplex. Ukr Math J 56:1418–1427

    Article  Google Scholar 

  41. Rozikov U (2020) Population dynamics: algebraic and probabilistic approach. World Scientific, Singapore

    Book  Google Scholar 

  42. Saburov M (2013) Some strange properties of quadratic stochastic Volterra operators. World Appl Sci J 21:94–97

    Google Scholar 

  43. Sandholm WH (2010) Population games and evolutionary dynamics. MIT Press, Cambridge

    MATH  Google Scholar 

  44. Schuster P, Sigmund K (1983) Replicator dynamics. J Theor Biol 100(3):533–538

    Article  MathSciNet  Google Scholar 

  45. Sigmund K (2010) Evolutionary game dynamics: American Mathematical Society short course. American Mathematical Society, Providence

    Google Scholar 

  46. Skellam JG (1951) Random dispersal in theoretical populations. Biometrica 38:196–218

    Article  MathSciNet  MATH  Google Scholar 

  47. Swinkels J (1992) Evolutionary stability with equilibrium entrants. J Econ Theory 57:306–332

    Article  MathSciNet  MATH  Google Scholar 

  48. Taylor PD (1979) Evolutionarily stable strategies with two types of players. J Appl Probab 16:76–83

    Article  MathSciNet  MATH  Google Scholar 

  49. Taylor PD, Jonker L (1978) Evolutionarily stable strategies and game dynamics. Math Biosci 40:145–156

    Article  MathSciNet  MATH  Google Scholar 

  50. Thomas B (1984) Evolutionary stability: states and strategies. Theor Popul Biol 26:49–67

    Article  MathSciNet  MATH  Google Scholar 

  51. Thomas B (1985) On evolutionarily stable sets. J Math Biol 22:105–115

    Article  MathSciNet  MATH  Google Scholar 

  52. von Neumann J, Morgenstern O (1944) Theory of games and economic behavior. Princeton University Press, Princeton

    MATH  Google Scholar 

  53. Weibull JW (1995) Evolutionary game theory. MIT Press, Cambridge

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by American University of the Middle East, Kuwait. The author is greatly indebted to two anonymous reviewers for carefully reading the manuscript and for providing such constructive comments and suggestions which substantially contributed to improving the quality and presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Saburov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saburov, M. On Discrete-Time Replicator Equations with Nonlinear Payoff Functions. Dyn Games Appl 12, 643–661 (2022). https://doi.org/10.1007/s13235-021-00404-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-021-00404-0

Keywords

Mathematics Subject Classification