Abstract
Nisin is the most prominent lantibiotic and is used as a food preservative due to its high potency against certain Gram-positive bacteria. However, the effectiveness of nisin is often affected by environmental factors such as pH, temperature, food composition, structure, as well as food microbiota. The development of nisin resistance has been seen among various Gram-positive bacteria. The mechanisms under the acquisition of nisin resistance are complicated and may differ among strains. This paper presents a brief review of possible mechanisms of the development of resistance to nisin among Gram-positive bacteria.
Similar content being viewed by others
References
Abi Khattar Z, Rejasse A, Destoumieux-Garzón D, Escoubas JM, Sanchis V, Lereclus D, Givaudan A, Kallassy M, Nielsen-Leroux C, Gaudriault S (2009) The dlt operon of Bacillus cereus is required for resistance to cationic antimicrobial peptides and for virulence in insects. J Bacteriol 191:7063–7073
Alifax R, Chevalier R (1962) Study of the nisinase produced by Streptococcus thermophilus. J Dairy Res 29:233–240
Blake KL, Randall CP, O’Neill AJ (2011) In Vitro studies indicate a high resistance potential for the lantibiotic nisin in Staphylococcus aureus and define a genetic basis for Nisin resistance. Antimicrob Agents Chemother 55:2362–2368
Breuer B, Radler F (1996) Inducible resistance against nisin in Lactobacillus casei. Arch Microbiol 165:114–118
Breukink E, de Kruijff B (2006) Lipid II as a target for antibiotics. Nat Rev Drug Discov 5:321–332
Breukink E, Wiedemann I, van Kraaij C, Kuipers OP, Sahl HG, de Kruijff B (1999) Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286:2361–2364
Brötz H, Josten M, Wiedemann I, Schneider U, Götz F, Bierbaum G, Sahl HG (1998) Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol Microbiol 30:317–327
Collins B, Curtis N, Cotter PD, Hill C, Ross RP (2010) The ABC transporter AnrAB contributes to the innate resistance of Listeria monocytogenes to nisin, bacitracin, and various β-lactam antibiotics. Antimicrob Agents Chemother 54:4416–4423
Cotter PD, Guinane CM, Hill C (2002) The LisRK signal transduction system determines the sensitivity of Listeria monocytogenes to nisin and cephalosporins. Antimicrob Agents Chemother 46:2784–2790
Crandall AD, Montville TJ (1998) Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotype. Appl Environ Microbiol 64:231–237
Davies EA, Adams MR (1994) Resistance of Listeria monocytogenes to the bacteriocin nisin. Int J Food Microbiol 21:341–347
Davies EA, Falahee MB, Adams MR (1996) Involvement of the cell envelope of Listeria monocytogenes in the acquisition of nisin resistance. J Appl Bacteriol 81:139–146
Delcour J, Ferain T, Deghorain M, Palumbo E, Hols P (1999) The biosynthesis and functionality of the cell wall of lactic acid bacteria. Antonie van Leeuwenhoek 76:159–184
Demel RA, Peelen T, Siezen RJ, de Kruijff B, Kuipers OP (1996) Nisin Z, mutant nisin Z and lacticin 481 interactions with anionic lipids correlate with antimicrobial activity: A monolayer study. Eur J Biochem 235:267–274
Dintner S, Staroń A, Berchtold E, Petri T, Mascher T, Gebhard S (2011) Coevolution of ABC transporters and two-component regulatory systems as resistance modules against antimicrobial peptides in firmicutes bacteria. J Bacteriol 193(15):3851–3862
Driessen AJ, van den Hooven HW, Kuiper W, van de Kamp M, Sahl HG, Konings RN, Konings WN (1995) Mechanistic studies of lantibiotic-induced permeabilization of phospholipid vesicles. Biochemistry 34:1606–1614
Falord M, Mäder U, Hiron A, Débarbouillé M, Msadek T (2011) Investigation of the Staphylococcus aureus GraSR regulon reveals novel links to virulence, stress response and cell wall signal transduction pathways. PLoS ONE 6(7):e21323
Falord M, Karimova G, Hiron A, Msadek T (2012) GraXSR protein interact with the VraFG ABC transporter to form a five-component system required for cationic antimicrobial peptides sensing and resistance in Staphylococcus aureus. Antimicrob Agents Chemother. doi:10.1128/AAC.0505-11
Field D, Begley M, O’Connor PM, Daly KM, Hugenholtz F, Cotter PD, Hill C, Ross RP (2012) Bioengineered Nisin A derivatives with enhanced activity against both Gram positive and Gram negative pathogens. PLoS ONE 7(10):e46884. doi:10.1371/journal.pone.0046884
Froseth BR, McKay LL (1991) Molecular characterization of the nisin resistance region of Lactococcus lactis subsp. lactis biovar diacetylactis DRC3. Appl Environ Microbiol 57:804–811
Garde S, Ávila M, Medina M, Nuñez M (2004) Fast induction of nisin resistance in Streptococcus thermophilus INIA 463 during growth in milk. Int J Food Microbiol 96:165–172
Goulhen F, Meghrous J, Lacroix C (1998) Characterization of nisin-resistant variants of Pediococcus acidilactici UL5, a producer of pediocin. J Appl Microbiol 85:387–397
Gravesen A, Kallipolitis B, Holmstrøm K, Høiby PE, Ramnath M, Knøchel S (2004) pbp2229-mediated nisin resistance mechanism in Listeria monocytogenes confers cross-protection to class IIa bacteriocins and affects virulence gene expression. Appl Environ Microbiol 70:1669–1679
Gravesen A, Sørensen K, Aarestrup FM, Knøchel S (2001) Spontaneous nisin-resistant Listeria monocytogenes mutants with increased expression of a putative penicillin-binding protein and their sensitivity to various antibiotics. Microb Drug Resist 7:127–135
Gut IM, Prouty AM, Ballard JD, van der Donk WA, Blanke SR (2008) Inhibition of Bacillus anthracis spore outgrowth by nisin. Antimicrob Agents Chemother 52:4281–4288
Hansen ME, Wangari R, Hansen EB, Mijakovic I, Jensen PR (2009) Engineering of Bacillus subtilis 168 for increased nisin resistance. Appl Environ Microbiol 75:6688–6695
Harris LJ, Fleming HP, Klaenhammer TR (1991) Sensitivity and resistance of Listeria monocytogenes ATCC 19115, Scott A, and UAL500 to nisin. J Food Prot 54:836–840
Herbert S, Bera A, Nerz C, Kraus D, Peschel A, Goerke C, Meehl M, Cheung A, Götz F (2007) Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in Staphylococci. PLoS Pathogens 3(7):e102
Hiron A, Falord M, Valle J, Débarbouillé M, Msadek T (2011) Bacitracin and nisin resistance in Staphylococcus aureus: A novel pathway involving the BraS/BraR two-component system (SA2417/SA2418) and both the BraD/BraE and VraD/VraE ABC transporters. Mol Microbiol 81:602–622
Höltje JV (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62:181–203
Hurst A (1981) Nisin. Adv Appl Microbiol 27:85–123
Jarvis B (1967) Resistance to nisin and production of nisin-inactivating enzymes by several Bacillus species. J Gen Microbiol 47:33–48
Jarvis B (1970) Enzymic reduction of the C-terminal dehydroalanyl-lysine sequence in nisin. Biochem J 119:56
Jarvis B, Farr J (1971) Partial purification, specificity and mechanism of action of the nisin-inactivating enzyme from Bacillus cereus. Biochim Biophys Acta 227:232–240
Jordan S, Junker A, Helmann JD, Mascher T (2006) Regulation of LiaRS-dependent gene expression in Bacillus subtilis: Identification of inhibitor proteins, regulator binding sites, and target genes of a conserved cell envelope stress-sensing two-component system. J Bacteriol 188:5153–5166
Joseph P, Fichant G, Quentin Y, Denizot F (2002) Regulatory relationship of two-component and ABC transport systems and clustering of their genes in the Bacillus/Clostridium group, suggest a functional link between them. J Mol Microbiol Biotechnol 4:503–513
Kolar SL, Nagarajan V, Oszmiana A, Rivera FE, Miller HK, Davenport JE, Riordan JT, Potempa J, Barber DS, Koziel J, Elasri MO, Shaw LN (2011) NsaRS is a cell-envelop-stress-sensing two-component system of Staphylococcus aureus. Microbiology 157:2206–2219
Kooy JS (1952) Strains of Lactobacillus plantarum which inhibit the activity of the antibiotics produced by Streptococcus lactis. Ned Melk Zuiveltijdschr 6:323–330
Kovács M, Halfmann A, Fedtke I, Heintz M, Peschel A, Vollmer W, Hakenbeck R, Brückner R (2006) A functional dlt operon, encoding proteins required for incorporation of D-alanine in teichoic acids in Gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumoniae. J Bacteriol 188:5797–5805
Kramer NE, Hasper HE, van den Bogaard PT, Morath S, de Kruijff B, Hartung T, Smid EJ, Breukink E, Kok J, Kuipers OP (2008) Increased D-alanylation of lipoteichoic acid and a thickened septum are main determinants in the nisin resistance mechanism of Lactococcus lactis. Microbiology 154:1755–1762
Kramer NE, Smid EJ, Kok J, de Kruijff B, Kuipers OP, Breukink E (2004) Resistance of Gram-positive bacteria to nisin is not determined by lipid II levels. FEMS Microbiol Lett 239:157–161
Kramer NE, van Hijum SAFT, Knol J, Kok J, Kuipers OP (2006) Transcriptome analysis reveals mechanism by which Lactococcus lactis acquires nisin resistance. Antimicrob Agents Chemother 50:1753–1761
Kuroda M, Kuroda H, Oshima T, Takeuchi F, Mori H, Hiramatsu K (2003) Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Mol Microbiol 49:807–821
Li J, Chikindas ML, Ludescher RD, Montville TJ (2002) Temperature and surfactant induced membrane modifications that alter Listeria monocytogenes nisin sensitivity by different mechanisms. Appl Environ Microbiol 68:5904–5910
Li M, Lai YP, Villaruz AE, Cha DJ, Sturdevant DE, Otto M (2007a) Gram-positive three-component antimicrobial peptide-sensing system. Proc Natl Acad Sci USA 104(22):9469–9474
Li M, Cha DJ, Lai YP, Villaruz AE, Sturdevant DE, Otto M (2007b) The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol Microbiol 66(5):1136–1147
Liu CQ, Harvey ML, Dunn NW (1997) Cloning of a gene encoding nisin resistance from Lactococcus lactis subsp. lactis M189 which is transcribed from an extended 210 promoter. J Gen Appl Microbiol 43:67–73
Lubelski J, de Jong A, van Merkerk R, Aqustiandari H, Kuipers OP, Kok J, Driessen AJ (2006) LmrCD is a major multidrug resistance transporter in Lactococcus lactis. Mol Microbiol 61:771–781
Lubelski J, Rink R, Khusainov R, Moll GN, Kuipers OP (2008) Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell Mol Life Sci 65:455–476
Maisnier-Patin S, Richard J (1996) Cell wall changes in nisin-resistant variants of Listeria innocua grown in the presence of high nisin concentrations. FEMS Microbiol Lett 140:29–35
Majchrzykiewicz JA, Kuipers OP, Bijlsma JJ (2010) Generic and specific adaptive responses of Streptococcus pneumoniae to challenge with three distinct antimicrobial peptides, bacitracin, LL-37, and nisin. Antimicrob Agents Chemother 54:440–451
Mantovani HC, Cruz AMO, Paiva AD (2011) Bacteriocin activity and resistance in livestock pathogens. In: Méndez-Vilas A (ed) Science against microbial pathogens: Communicating current research and technological advances. Formatex Research Center, Badajoz, pp 853–863
Mantovani HC, Russell JB (2001) Nisin resistance of Streptococcus bovis. Appl Environ Microbiol 67:808–813
Martínez B, Zomer AL, Rodríguez A, Kok J, Kuipers OP (2007) Cell envelope stress induced by the bacteriocin Lcn972 is sensed by the lactococcal two-component system CesSR. Mol Microbiol 64:473–486
Martin I, Ruysschaert JM, Sanders D, Giffard CJ (1996) Interaction of the lantibiotic nisin with membranes revealed by fluorescence quenching of an introduced tryptophan. Eur J Biochem 239:156–164
Mascher T (2006) Intramembrane-sensing histidine kinases: a new family of cell envelope stress sensors in Firmicutes bacteria. FEMS Microbiol Lett 264:133–144
Mascher T, Margulis NG, Wang T, Ye RW, Helmann JD (2003) Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol Microbiol 50:1591–1604
Mascher T, Zimmer SL, Smith TA, Helmann JD (2004) Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis. Antimicrob Agents Chemother 48:2888–2896
Mazzotta AS, Crandall AD, Montville TJ (1997) Nisin resistance in Clostridium botulinum spores and vegetative cells. Appl Environ Microbiol 63:2654–2659
Mazzotta AS, Montville TJ (1997) Nisin induces changes in membrane fatty acid composition of Listeria monocytogenes nisin-resistant strains at 10° C and 30° C. J Appl Microbiol 82:32–38
Mazzotta AS, Montville TJ (1999) Characterization of fatty acid composition, spore germination, and thermal resistance in a Nisin-resistant mutant of Clostridium botulinum 169B and in the wild-type strain. Appl Environ Microbiol 65:659–664
McBride SM, Sonenshein AL (2011) The dlt operon confers resistance to cationic antimicrobial peptides in Clostridium difficile. Microbiology 157:1457–1465
McCormick NE, Halperin SA, Lee SF (2011) Regulation of D-alanylation of lipoteichoic acid in Streptococcus gordonii. Microbiology 157:2248–2256
Ming XT, Daeschel MA (1993) Nisin resistance of foodborne bacteria and the specific resistance responses of Listeria monocytogenes Scott A. J Food Prot 56:944–948
Ming XT, Daeschel MA (1995) Correlation of cellular phospholipid content with nisin resistance of Listeria monocytogenes Scott A. J Food Prot 58:416–420
Montville TJ, De Siano T, Nock A, Padhi S, Wade D (2006) Inhibition of Bacillus anthracis and potential surrogate bacilli growth from spore inocula by nisin and other antimicrobial peptides. J Food Prot 69:2529–2533
Neuhaus FC, Baddiley J (2003) A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in Gram-positive bacteria. Microbiol Mol Biol Rev 67:686–723
Palmer ME, Wiedmann M, Boor KJ (2009) Sigma (B) and sigma (L) contribute to Listeria monocytogenes 10403S response to the antimicrobial peptides SdpC and nisin. Foodborne Pathog Dis 6:1057–1065
Peschel A, Jack RW, OttoM CLV, Staubitz P, Nicholson G, Kalbacher H, Nieuwenhuizen WF, Jung G, Tarkowski A, van Kessel K, Strijp JA (2001) Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with L-lysine. J Exp Med 193:1067–1076
Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Götz F (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274:8405–8410
Poyart C, Lamy MC, Boumaila C, Fiedler F, Trieu-Cuot P (2001) Regulation of D-alany-lipoteichoic acid biosynthesis in Streptococcus agalactiae involves a novel two-component regulatory system. J Bacteriol 183:6324–6334
Sass P, Bierbaum G (2009) Native graS mutation supports the susceptibility of Staphylococcus aureus strain SG511 to antimicrobial peptides. Int J Med Microbiol 299:313–322
Suntharalingam P, Senadheera MD, Mair RW, Lévesque CM, Cvitkovitch DG (2009) The LiaFSR system regulates the cell envelope stress response in Streptococcus mutans. J Bacteriol 191:2973–2984
Sun Z, Zhong J, Liang X, Liu J, Chen X, Huan L (2009) Novel mechanism for nisin resistance via proteolytic degradation of nisin by the nisin resistance protein NSR. Antimicrob Agents Chemother 53:1964–1973
Tang S, Chen XZ, Yang W, Chen ML, Huan LD (2001) Isolation and characterization of a plasmid pTS50, which encodes nisin resistance determinant in Lactococcus lactis TS1640. Wei Sheng Wu Xue Bao 41:536–541
Thedieck K, Hain T, Mohamed W, Tindall BJ, Nimtz M, Chakraborty T, Wehland J, Jänsch L (2006) The MprF protein is required for lysinylation of phospholipids in listerial membranes and confers resistance to cationic antimicrobial peptides (CAMPs) on Listeria monocytogenes. Mol Microbiol 62:1325–1339
Tsuda H, Yamashita Y, Shibata Y, Nakano Y, Koga T (2002) Genes involved in bacitracin resistance in Streptococcus mutans. Antimicrob Agents Chemother 46:3756–3764
van Veen HW, Venema K, Bolhuis H, Oussenko I, Kok J, Poolman B, Driessen AJ, Konings WN (1996) Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1. Proc Natl Acad Sci USA 93:10668–10672
Velamakanni S, Yao Y, Gutmann DA, van Veen HW (2008) Multidrug transport by the ABC transporter Sav 1866 from Staphylococcus aureus. Biochemistry 47:9300–9308
Verheul A, Russell NJ, Van’T Hof R, Rombouts FM, Abee T (1997) Modifications of membrane phospholipid composition in nisin-resistant Listeria monocytogenes Scott A. Appl Environ Microbiol 63:3451–3457
Acknowledgments
This work was supported by the National Natural Science Foundation of China (No. 31101334) and the Foundation of Hunan Agricultural University (No. 62020111023).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Zhou, H., Fang, J., Tian, Y. et al. Mechanisms of nisin resistance in Gram-positive bacteria. Ann Microbiol 64, 413–420 (2014). https://doi.org/10.1007/s13213-013-0679-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13213-013-0679-9