[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Implementation of image colorization with convolutional neural network

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

Huge amount of work is getting done on Image colorization worldwide. This research paper proposes a model for image colorization while making use of fully automatic Convolutional Neural Network. Image colorization processes a daunting task, and this research paper proposes a relevant model for the prediction of A and B models for LAB color space and it makes a direct use the lightness channel. In this work, a pre-trained VGG-16 network was used for semantically interpreting the concepts associated with images and coloring the images. In the proposed work, the convolutional layer has been fused with the max pooling layer (higher one) of the VGG network. Architecture of the proposed model has been presented. The experimentation has been carried out with varying objective functions. LaMem experimental dataset has been used in this work in order to validate the proposed model. The proposed model is evaluated and results are visualized by histograms for true and predicted images for RGB values. Further, the proposed model has been compared with the existing models and performs better in terms of execution times (in s) for different image sizes and the results are tabulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad M, Doja MN, Beg MS (2018) Security analysis and enhancements of an image cryptosystem based on hyperchaotic system. J King Saud Univ-Comput Inf Sci. https://doi.org/10.1016/j.jksuci.2018.02.002

    Article  Google Scholar 

  • Bala A, Kaur T (2016) Local texton XOR patterns: a new feature descriptor for content-based image retrieval. Eng Sci Technol Int J 19(1):101–112

    Google Scholar 

  • Bugeau A, Ta VT (2012) Patch-based image colorization. In: 21st international conference on pattern recognition (ICPR), IEEE, pp 3058–3061

  • Charpiat G, Hofmann M, Schölkopf B (2008). Automatic image colorization via multimodal predictions. In: European conference on computer vision, Springer, Berlin, pp 126–139

  • Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2018) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS. IEEE Trans Pattern Anal Mach Intell 40(4):834–848

    Article  Google Scholar 

  • Cheng Z, Yang Q, Sheng B (2015) Deep colorization. In: Proceedings of the IEEE international conference on computer vision, pp 415–423

  • Cireşan D, Meier U (2015) Multi-column deep neural networks for offline handwritten Chinese character classification. In: 2015 International joint conference on neural networks (IJCNN), IEEE, pp 1–6

  • Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115

    Article  Google Scholar 

  • Huang YC, Tung YS, Chen JC, Wang SW, Wu JL (2005) An adaptive edge detection based colorization algorithm and its applications. In: Proceedings of the 13th annual ACM international conference on multimedia, ACM, pp 351–354

  • Hwang J, Zhou Y (2016) Image colorization with deep convolutional neural networks. In Stanford University, Technical Report

  • Jiang, H., Tang, S., Li, Y., Ai, D., Song, H., & Yang, J. (2019). Endoscopic image colorization using convolutional neural network. In: 2019 IEEE 7th international conference on bioinformatics and computational biology (ICBCB), IEEE, pp 162–166

  • Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Jordan MI, LeCun Y, Solla SA (eds) Advances in neural information processing systems. MIT Press, Cambridge, pp 1097–1105

    Google Scholar 

  • Levin A, Lischinski D, Weiss Y (2004) Colorization using optimization. In: ACM transactions on graphics (tog), ACM, vol 23, no 3, pp 689–694

  • Margulis D (2005) Photoshop LAB color: The canyon conundrum and other adventures in the most powerful colorspace. Peachpit Press, Berkeley

    Google Scholar 

  • Qu Y, Pang WM, Wong TT, Heng PA (2008) Richness-preserving manga screening. In ACM transactions on graphics (TOG), ACM, vol 27, no 5, p 155

  • Quan W, Wang K, Yan DM, Pellerin D, Zhang X (2019). Impact of data preparation and CNN’s first layer on performance of image forensics: a case study of detecting colorized images. In: IEEE/WIC/ACM international conference on web intelligence, ACM, vol 24800, pp 127–131

  • R. Dahl image colorization http://tinyclouds.org/colorize

  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  • Welsh T, Ashikhmin M, Mueller K (2002) Transferring color to greyscale images. In: ACM transactions on graphics (TOG), ACM, vol 21, no 3, pp 277–280

  • Yan C, Xie H, Yang D, Yin J, Zhang Y, Dai Q (2018) Supervised hash coding with deep neural network for environment perception of intelligent vehicles. IEEE Trans Intell Transp Syst 19(1):284–295

    Article  Google Scholar 

  • Yatziv L, Sapiro G (2006) Fast image and video colorization using chrominance blending. IEEE Trans Image Process 15(5):1120–1129

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chetna Dabas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabas, C., Jain, S., Bansal, A. et al. Implementation of image colorization with convolutional neural network. Int J Syst Assur Eng Manag 11, 625–634 (2020). https://doi.org/10.1007/s13198-020-00960-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-020-00960-5

Keywords

Navigation