[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Generalized fuzzy cognitive maps: a new extension of fuzzy cognitive maps

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

A fuzzy cognitive maps (FCM) is a cognitive map within the relations between the elements. FCM has been widely used in many applications such as experts system and knowledge engineering. However, classical FCM is inherently short of sufficient capability of representing and aggregating uncertain information. In this paper, generalized FCM (GFCM) is proposed based on genetic algorithm and interval numbers. An application frame of GFCM is detailed. At last, a numerical example about socio-economic system is used to illustrate the effectiveness of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Boutalis Y, Kottas TL, Christodoulou M (2009) Adaptive estimation of fuzzy cognitive maps with proven stability and parameter convergence. IEEE Trans Fuzzy Syst 17(4):874–889

    Article  Google Scholar 

  • Carvalho JP (2013) On the semantics and the use of fuzzy cognitive maps and dynamic cognitive maps in social sciences. Fuzzy Sets Syst 214:6–19

    Article  MathSciNet  Google Scholar 

  • Chen S, Deng Y, Jiyi W (2013) Fuzzy sensor fusion based on evidence theory and its application. Appl Artif Intell 27(3):235–248

    Article  Google Scholar 

  • Deng Y, Chan FTS (2011) A new fuzzy dempster MCDM method and its application in supplier selection. Expert Syst Appl 38(8):9854–9861

    Article  Google Scholar 

  • Deng Y, Jiang W, Sadiq R (2011a) Modeling contaminant intrusion in water distribution networks: a new similarity-based dst method. Expert Syst Appl 38(1):571–578

    Article  Google Scholar 

  • Deng Y, Sadiq R, Jiang W, Tesfamariam S (2011b) Risk analysis in a linguistic environment: a fuzzy evidential reasoning-based approach. Expert Syst Appl 38(12):15438–15446

    Article  Google Scholar 

  • Deng X, Yong H, Deng Y, Mahadevan S (2014) Environmental impact assessment based on d numbers. Expert Syst Appl 41(2):635–643

    Article  Google Scholar 

  • Dickerson JA, Kosko B (1993) Virtual worlds as fuzzy cognitive maps. In: Virtual reality annual international symposium, IEEE, pp 471–477

  • Du Y , Mo H, Deng X, Sadiq R, Deng Y (2014) A new method in failure mode and effects analysis based on evidential reasoning. Int J Syst Assur Eng Manag 5(1):1–10

    Article  Google Scholar 

  • Ganguli R (2014) Fuzzy cognitive maps for structural damage detection. In: Papageorgiou IE (ed) Fuzzy cognitive maps for applied sciences and engineering. Springer Berlin, Heidelberg, pp 267–290

  • Glykas M (2013) Fuzzy cognitive strategic maps in business process performance measurement. Expert Syst Appl 40(1):1–14

    Article  Google Scholar 

  • Gray SA, Zanre Erin, Gray SRJ (2014) Fuzzy cognitive maps as representations of mental models and group beliefs. In: Papageorgiou IE (ed) Fuzzy cognitive maps for applied sciences and engineering. Springer Berlin, Heidelberg, pp 29–48

  • Gupta P, Gandhi OP (2013) Ontological modeling of spatial shaft-position knowledge for steam turbine rotor. Int J Syst Assur Eng Manag 4(3):284–292

    Article  Google Scholar 

  • Gupta P, Gandhi OP (2014) Equipment redesign feasibility through maintenance-work-order records using fuzzy cognitive maps. Int J Syst Assur Eng Manag 5(1):21–31

    Article  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Univ. of Michigan Press, Ann Arbor

    MATH  Google Scholar 

  • Iakovidis DK, Papageorgiou E (2011) Intuitionistic fuzzy cognitive maps for medical decision making. IEEE Trans Inf Technol Biomed 15(1):100–107

    Article  Google Scholar 

  • Kandasamy W, Indra V (2000) Applications of fuzzy cognitive maps to determine the maximum utility of a route. J Fuzzy Math 8:65–77

    MATH  Google Scholar 

  • Kandasamy WBV, Smarandache F (2003) Fuzzy cognitive maps and neutrosophic cognitive maps. American Research Press, Rehoboth

    MATH  Google Scholar 

  • Kang B, Deng Y, Sadiq R, Mahadevan S (2012) Evidential cognitive maps. Knowl-Based Syst 35:77–86

    Article  Google Scholar 

  • Khan MS, Quaddus M (2004) Group decision support using fuzzy cognitive maps for causal reasoning. Group Dec Negot 13(5):463–480

    Article  Google Scholar 

  • Konar A, Chakraborty UK (2005) Reasoning and unsupervised learning in a fuzzy cognitive map. Inf Sci 170(2):419–441

    Article  MathSciNet  MATH  Google Scholar 

  • Kosko B (1986) Fuzzy cognitive maps. Int J Man-Mach Stud 24(1):65–75

    Article  MATH  Google Scholar 

  • Kosko B (1996) Fuzzy Engineering. Prentice-Hall, Inc., Englewood Cliffs

    MATH  Google Scholar 

  • Liu J, Chan FTS, Li Y, Zhang Y, Deng Y (2012) A new optimal consensus method with minimum cost in fuzzy group decision. Knowl-Based Syst 35:357–360

    Article  Google Scholar 

  • Malik SC (2013) Reliability modeling of a computer system with preventive maintenance and priority subject to maximum operation and repair times. Int J Syst Assur Eng Manag 4(1):94–100

    Article  Google Scholar 

  • Nápoles G, Grau I, León M, Grau R (2013) Modelling, aggregation and simulation of a dynamic biological system through fuzzy cognitive maps. In: Batyrshin I, Mendoza MG (eds) Advances in computational intelligence. Springer Berlin, Heidelberg, pp 188–199

  • Papageorgiou EI (2011) A new methodology for decisions in medical informatics using fuzzy cognitive maps based on fuzzy rule-extraction techniques. Appl Soft Comput 11(1):500–513

    Article  Google Scholar 

  • Papageorgiou EI (2013) Review study on fuzzy cognitive maps and their applications during the last decade. In: Glykas M (ed) Business process management. Springer Berlin, Heidelberg, pp 281–298

    Chapter  Google Scholar 

  • Papageorgiou EI, Iakovidis DK (2013) Intuitionistic fuzzy cognitive maps. Fuzzy Syst IEEE Trans 21(2):342–354

    Article  Google Scholar 

  • Parsopoulos KE, Papageorgiou EI, Groumpos PP, Vrahatis MN (2004) Evolutionary computation techniques for optimizing fuzzy cognitive maps in radiation therapy systems. Presence 3102:402–413

    Google Scholar 

  • Papageorgiou EI, Papandrianos N, Karagianni G, Kyriazopoulos G, Sfyras D (2011) A fuzzy inference map approach to cope with uncertainty in modeling medical knowledge and making decisions. Intell Decis Technol 5(3):219–235

    Article  Google Scholar 

  • Salmeron JL (2010) Modelling grey uncertainty with fuzzy grey cognitive maps. Expert Syst Appl 37(12):7581–7588

    Article  Google Scholar 

  • Sengupta A, Pal TK (2000) On comparing interval numbers. Eur J Oper Res 127(1):28–43

    Article  MathSciNet  MATH  Google Scholar 

  • Salmeron JL, Papageorgiou EI (2014) Using fuzzy grey cognitive maps for industrial processes control. In: Papageorgiou IE (ed) Fuzzy cognitive maps for applied sciences and engineering. Springer Berlin, Heidelberg, pp 237–252

  • Shafiqul Islam M, Zargar A, Dyck R, Mohapatra A, Sadiq R (2012) Data fusion-based risk assessment framework: an example of benzene. Intl J Syst Assur Eng Manag 3(4):267–283

    Article  Google Scholar 

  • Simões JM, Gomes CF, Yasin MM (2011) A literature review of maintenance performance measurement: a conceptual framework and directions for future research. J Qual Maint Eng 17(2):116–137

    Article  Google Scholar 

  • Siraj A, Bridges SM, Vaughn RB (2001) Fuzzy cognitive maps for decision support in an intelligent intrusion detection system. In: IFSA world congress and 20th NAFIPS international conference, 2001. Joint 9th, vol 4, IEEE, pp 2165–2170

  • Smarandache F (2002) Definitions derived from neutrosophics. Mult Valued Log Int J 8(1):591–603

    MathSciNet  MATH  Google Scholar 

  • Stach W, Kurgan L, Pedrycz W, Reformat M (2005) Genetic learning of fuzzy cognitive maps. Fuzzy Sets Syst 153(3):371–401

    Article  MathSciNet  MATH  Google Scholar 

  • Stakias G, Psoras M, Glykas M (2013) Fuzzy cognitive maps in social and business network analysis. Bus Process Manag 444:241–279

    Google Scholar 

  • Stylios CD, Groumpos PP (1999) Fuzzy cognitive maps: a model for intelligent supervisory control systems. Comput Ind 39(3):229–238

    Article  Google Scholar 

  • Stylios CD, Groumpos PP (2000) Fuzzy cognitive maps in modeling supervisory control systems. J Intell Fuzzy Syst 8(1):83–98

    MathSciNet  MATH  Google Scholar 

  • Tran L, Duckstein L (2002) Comparison of fuzzy numbers using a fuzzy distance measure. Fuzzy Sets Syst 130(3):331–341

    Article  MathSciNet  MATH  Google Scholar 

  • Yang B, Peng Z (2009) Fuzzy cognitive map and a mining methodology based on multi-relational data resources. Fuzzy Inf Eng 1(4):357–366

    Article  MathSciNet  Google Scholar 

  • Yesil E, D MF, Sakalli A, Ozturk C, Guzay C (2013) Self-tuning pi controllers via fuzzy cognitive maps. In: Joe Turner A, Seneca SC (eds) Artificial intelligence applications and innovations. Springer Berlin, Heidelberg, pp 567–576

    Chapter  Google Scholar 

  • Zhang X, Deng Y, Chan FTS, Xu P, Mahadevan S, Hu Y (2013) IFSJSP: a novel methodology for the job-shop scheduling problem based on intuitionistic fuzzy sets. Int J Prod Res 51(17):5100–5119

    Article  Google Scholar 

  • Zhang Y, Zhang Z, Deng Y, Mahadevan S (2013b) A biologically inspired solution for fuzzy shortest path problems. Appl Soft Comput 13(5):2356–2363

    Article  Google Scholar 

Download references

Acknowledgments

The work is partially supported by National High Technology Research and Development Program of China (863 Program) (Grant No. 2013AA013801), National Natural Science Foundation of China (Grant Nos. 61174022, 61573290, 61503237), China State Key Laboratory of Virtual Reality Technology and Systems, Beihang University (Grant No.BUAA-VR-14KF-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Deng.

Additional information

Bingyi Kang and Hongming Mo have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, B., Mo, H., Sadiq, R. et al. Generalized fuzzy cognitive maps: a new extension of fuzzy cognitive maps. Int J Syst Assur Eng Manag 7, 156–166 (2016). https://doi.org/10.1007/s13198-016-0444-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-016-0444-0

Keywords

Navigation