[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Yeast (Saccharomyces cerevisiae): evaluation of cellular disruption processes, chemical composition, functional properties and digestibility

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate yeast (Saccharomyces cerevisiae) from beer fermentation in its natural form (NY) and subjected to different processes of cellular ruptured [mechanical method using ultrasound (MRY) and modified autolysis using NaCl and ethanol (MAY)] regarding functional and digestibility properties, comparing them with textured soy protein (TSP). Ultrasound treatment resulted in 42% disruption efficiency and the micrographs obtained from scanning electron microscopy analysis showed important morphological modifications due to processes of cellular ruptured action. MRY cells presented more pronounced damage than LN, which suggests the rupture of the cell wall and exit of the internal material to the medium. NY, MRY, MAY, and TSP presented a very close composition concerning the protein content, ranging from 39.32 to 43.80% and moisture of 0.07–0.14%. In vitro digestibility of brewing yeast samples equated the digestibility of TSP (higher than 94%). Cellular disruption with ultrasound (MRY) caused an increase in foaming ability, stability and also oil retention capacity (8.82 mL of oil/g of protein). Modified autolysis (MAY) resulted in higher water holding capacity (14.50 g of water/g of protein) and index of water solubility (greater than 64%) with a decrease in their emulsifying properties. The highest water absorption capacity was presented by the TSP and NY. Therefore, in its different forms, yeast can be applied as a functional and technological ingredient in the food industry, with significant technological capabilities and potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson RA, Conway HF, Pfeifer UF, Griffin EL Jr (1969) Gelatinization of corn grits by roll and extrusion cooking. Cereal Sci Today St. Paul Minn 14(1):4–11

    Google Scholar 

  • AOAC (2005) Official methods of analysis of the Association Analytical Chemists, 18th edn. Gaithersburg, Maryland

    Google Scholar 

  • Babayan TL, Bezrukov MG, Latov VK, Belikov VM, Belavtseva EM (1981) Induced autolysis of Saccharomyces cerevisae: morphological effects, rheological, effects, and dynamics of accumulation of extracellular hydrolysis products. Curr Microbiol New York 5(3):163–168

    Article  CAS  Google Scholar 

  • Bzducha-Wróbel A, Błażejak S, Kieliszek M, Pobiega K, Falana K, Janowicz M (2018) Modification of the cell wall structure of Saccharomyces cerevisiae strains during cultivation on waste potato juice water and glycerol towards biosynthesis of functional polysaccharides. J Biotechnol 281:1–10

    Article  CAS  PubMed  Google Scholar 

  • Canella M (1978) Whipping properties of sunflower proteins dispersions. Food Sci Technol 11:259–260

    CAS  Google Scholar 

  • Charpentier C, Nguyen Van Long T, Bonaly R, Feuillat M (1986) Alteration of cell wall structure in Saccharomyces cerevisiae and Saccharomyces bayanus during autolysis. Appl Microbiol Biothecnol 24(5):405–413

    Article  CAS  Google Scholar 

  • Chaud SG, Sgarbieri VC (2006) Propriedades funcionais (tecnológicas) da parede celular de leveduras da fermentação alcoólica e das frações glicana, manana e glicoproteína. Ciência e Tecnologia de Alimentos Campinas 26(2):369–379

    Article  CAS  Google Scholar 

  • Costa AG, Magnani M, Castro-Gomez RJH (2012) Obtenção e caracterização de manoproteínas da parede celular de leveduras de descarte em cervejaria. Acta Scientiarum. Biol Sci 34(1):77–84

    Google Scholar 

  • da Araújo VBS, de Melo ANF, Costa AG, Castro-Gomez RH, Madruga MS, de Souza EL, Magnani M (2014) Followed extraction of β-glucan and mannoprotein from spent brewer’s yeast (Saccharomyces uvarum) and application of the obtained mannoprotein as a stabilizer in mayonnaise. Innov Food Sci Emerg Technol 23:164–170

    Article  CAS  Google Scholar 

  • de Câmara AA, Jr DupontS, Beney L, Gervais P, Rosenthal A, Correia RTP, Pedrini MRS (2016) Fisetin yeast-based bio-capsules via osmoporation: effects of process variables on the encapsulation efficiency and internalized fisetin content. Appl Microbiol Biotechnol 100(12):5547–5558

    Article  CAS  PubMed  Google Scholar 

  • Demirci A, Pometto AL (1999) Production of organically bound selenium yeast by continuous fermentation. J Agric Food Chem 47(6):2491–2495

    Article  CAS  PubMed  Google Scholar 

  • Fennema OR (2000) Química de los Alimentos, 1st edn. Acribia, Zaragoza, p 1280

    Google Scholar 

  • Francis FJ, Clydesdale FM (1975) Food colorimetry: theory and applications. AVI, Wesport

    Google Scholar 

  • Garba U, Kaur S (2014) Protein isolates: production, functional properties and application. Int J Curr Res Rev 6(3):35–45

    Google Scholar 

  • Halász A, Lásztity R (1991) Use of yeast biomass in food production. CRC Press, Boca Raton, p 312

    Google Scholar 

  • Hellborg L, Piskur J (2009) Yeast diversity in the brewing industry. In: Preedy VR (ed) Beer in health and disease prevention. Elsevier, New York, pp 1068–1073

    Google Scholar 

  • Karki B, Lamsal BP, Jung S, Van Leeuwen J, Pometto AL, Grewell D, Khanal SK (2010) Enhancing protein and sugar release from defatted soy flakes using ultrasound technology. J Food Eng 96(2):270–278

    Article  CAS  Google Scholar 

  • Lee MK, Lee SY (2009) The quality characteristics of Soy Wan-Jas made with different proteolytic enzyme treated textured soy proteins. Appl Biol Chem 52(6):708–715

    CAS  Google Scholar 

  • Lee SS, Robinson FM, Wang HY (1981) Rapid determination of yeast viability. Biotechnol Bioeng Symp 11:641–649

    Google Scholar 

  • Lopes AS, Mattietto RA, Menezes HC (2005) Estabilidade da polpa de pitanga sob congelamento. Ciência e Tecnologia de Alimentos, Campinas 25(3):553–559

    Article  Google Scholar 

  • Malik MA, Sharma HK, Saini CS (2017) High intensity ultrasound treatment of protein isolate extracted from dephenolized sunflower meal: effect on physicochemical and functional properties. Ultrason Sonochem 39:511–519

    Article  CAS  PubMed  Google Scholar 

  • Martínez JM, Cebrián G, Álvarez I, Raso J (2016) Release of Mannoproteins during Saccharomyces cerevisiae autolysis induced by pulsed electric field. Front Microbiol 7:1475

    Article  Google Scholar 

  • Moreira TCP, da Silva VM, Gombert AK, da Cunha RL (2016) Stabilization mechanisms of oil-in-water emulsions by Saccharomyces cerevisiae. Colloids Surf Biointerfaces 143:399–405

    Article  CAS  PubMed  Google Scholar 

  • Mussatto SI, Dragone G, Roberto IC (2006) Brewers’ spent grain: generation, characteristics and potential application. J Cereal Sci 43(1):1–14

    Article  CAS  Google Scholar 

  • Oliveira MS, Feddern V, Kupski L, Cipolatti EP, Badiale-Furlong E, de Souza-Soares LA (2010) Physico-chemical characterization of fermented rice bran biomass. J Food 8(3):229–236

    CAS  Google Scholar 

  • Oshodi AA, Ojokan E (1997) Effect of salts on some of the functional properties of bovine plasma protein concentrate. Food Chem 59(3):333–338

    Article  CAS  Google Scholar 

  • Otero MA, Vasallo MC, Verdieia O, Fernandez V, Betancourt D (1996) A process for the complete fractionation of baker’s yeast. J Chem Technol Biotechnol 67(1):67–71

    Article  CAS  Google Scholar 

  • Pacheco MTB, Sgarbieri VC (1998) Hydrophilic and rheological properties of Brewer’s yeast protein concentrates. J Food Sci 63(2):238–243

    Article  CAS  Google Scholar 

  • Pacheco MTB, Caballero-Cordoba GM, Sgarbieri VC (1997) Composition and nutritive value of yeast biomass and yeast protein concentrates. J Nutr Sci Vitaminol Tokyo 43(6):601–612

    Article  CAS  PubMed  Google Scholar 

  • Ramos GRV, Birchal VS, Seara LM, Pereira FD, Alvisi P (2011) Caracterização química do autolisado de levedura de alambique e avaliação da aceitabilidade do pão de queijo adicionado do autolisado desidratado. Revista de Nutrição Campinas 24(3):473–484

    Article  CAS  Google Scholar 

  • Reed G, Nagodawithana TW (1991) Yeast technology, 2nd edn. Van Nostrand Reinhold, New York, p 378

    Google Scholar 

  • Sarwar G, Shah BG, Mongeau R, Hoppner K (1985) Nucleic acid, fiber and nutrient composition of intactive dried food yeast products. J Food Sci 50:353–357

    Article  CAS  Google Scholar 

  • Sgarbieri VC (1996) Proteínas em Alimentos Protéicos. Propriedades – Degradações – Modificações. Livraria Varela, São Paulo

  • Sgarbieri VC, Alvim ID, Vilela ES, Baldini VL, Bragagnolo N (1999) Produção Piloto de Derivados de Levedura (Saccharomyces sp.) para Uso como Ingrediente na Formulação de Alimentos. Braz J Food Technol 2(1–2):119–125

    Google Scholar 

  • Silva FA, Marsaioli A Jr (2003) Atividade de água em amêndoas de castanha do Brasil (Bertholletia excelsa) secas por micro-ondas e convencionalmente. Revista Ciências Exatas e Naturais Campinas 5(1):23–32

    Google Scholar 

  • Stewart GG (2016) Saccharomyces species in the Production of Beer. Beverages 2(4):34

    Article  CAS  Google Scholar 

  • Wang JC, Kinsella JE (1976) Functional properties of novel proteins: Alfalfa Leaf protein. J Food Sci 41:286–292

    Article  CAS  Google Scholar 

  • Wasswa J, Tang J, Gu X, Yuan X (2007) Influence of the extent of enzymatic hydrolysis on the functional properties of protein hydrolysate from grass carp (Ctenopharyngodon idella) skin. Food Chem 104(4):1698–1704

    Article  CAS  Google Scholar 

  • Yamada EA, Sgarbieri VC (2005) Yeast (Saccharomyces cerevisiae) protein concentrate: preparation, chemical composition, and nutritional and functional properties. J Agric Food Chem 53(10):3931–3936

    Article  CAS  PubMed  Google Scholar 

  • Yamada EA, Alvim ID, Santucci MCC, Sgarbieri VC (2003) Composição centesimal e valor protéico de levedura residual da fermentação etanólica e de seus derivados. Revista Nutrição. Instituto de Tecnologia de Alimentos Campinas 16(4):423–432

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001 and by FAPESC (Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina—Grant: 2015TR295).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darlene Cavalheiro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertolo, A.P., Biz, A.P., Kempka, A.P. et al. Yeast (Saccharomyces cerevisiae): evaluation of cellular disruption processes, chemical composition, functional properties and digestibility. J Food Sci Technol 56, 3697–3706 (2019). https://doi.org/10.1007/s13197-019-03833-3

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-019-03833-3

Keywords