Abstract
In this paper we characterize the set of bipartite non-signalling probability distributions in terms of tensor norms. Using this characterization we give optimal upper and lower bounds on Bell inequality violations when non-signalling distributions are considered. Interestingly, our upper bounds show that non-signalling Bell inequality violations cannot be significantly larger than quantum Bell inequality violations.
Similar content being viewed by others
Notes
Observe that both quantities depend on N and K, so we should denote \(LV^{N,K}_{\mathcal Q}\) and \(LV^{N,K}_{{\mathcal {NS}}}\), but we will simplify notation when N and K are clear from the context.
Formally, the tensor M defines the inequality \(\langle M,P\rangle \le \omega _{\mathcal L}(M)\) for every \(P\in \mathcal L\).
Note that Lemma 5.7 applies on non-negative tensors, so we must use it on \(-R^-=|R^{-}|\).
Note that, as we mentioned in Remark 5.3, in general we cannot replace \(\Vert \alpha _1(R)\Vert _{NSG\otimes _\pi NSG}\) by \(\Vert \alpha _1(R)\Vert _{\ell _\infty ^N(\ell _1^K)\otimes _\pi \ell _\infty ^N(\ell _1^K)}\). However, for the particular elements of the form \(Q_1\otimes Q_2\), both norms coincide by Lemma 5.2.
References
Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)
Bavarian, M., Shor, P.W.: Information causality, Szemerédi-Trotter and algebraic variants of CHSH. In: Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, pp. 123–132 (2015)
Bell, J.S.: On the Einstein–Poldolsky–Rosen paradox. Physics 1, 195 (1964)
Bergh, J., Löfström, J.: Interpolation spaces: an introduction. Grundlehren der mathematischen Wissenschaften, vol. 223. Springer-Verlag, Berlin (1976)
Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)
Buhrman, H., Regev, O., Scarpa, G., de Wolf, R.: Near-optimal and explicit Bell inequality violations. Theory Comput. 8, 623–645 (2012)
Defant, A., Floret, K.: Tensor Norms and Operator Ideals. North-Holland, Amsterdam (1993)
Degorre, J., Kaplan, M., Laplante, S., Roland, J.: The communication complexity of non-signalling distributions. In: International Symposium on Mathematical Foundations of Computer Science, pp. 270–281 (2009)
Feige, U., Lovasz, L.: Two-prover one-round proof systems: their power and their problem. In: Proceedings of the 24th ACM Symposium on Theory of Computing, pp. 733–741 (1992)
Goemans, M.: Chernoff bounds, and some applications 18.310 lecture notes. http://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf (2015)
Ito, T.: Polynomial-space approximation of no-signaling provers. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 6198, pp. 140–151. Springer, Berlin (2010)
Junge, M., Palazuelos, C.: Large violation of Bell inequalities with low entanglement. Commun. Math. Phys. 306, 695–746 (2011)
Junge, M., Palazuelos, C., Pérez-García, D., Villanueva, I., Wolf, M.M.: Unbounded violations of bipartite Bell inequalities via operator space theory. Commun. Math. Phys. 300, 715–739 (2010)
Junge, M., Palazuelos, C., Pérez-García, D., Villanueva, I., Wolf, M.M.: Operator space theory: a natural framework for Bell inequalities. Phys. Rev. Lett. 104, 170405 (2010)
Lami, L., Palazuelos, C., Winter, A.: Ultimate data hiding in quantum mechanics and beyond. Commun. Math. Phys. 361(2), 661–708 (2018)
Lancien, C., Winter, A.: Parallel repetition and concentration for (sub-)no-signalling games via a flexible constrained de Finetti reduction. Chicago J. Theor. Comput. Sci. 2016, 4 (2016)
Palazuelos, C., Vidick, T.: Survey on nonlocal games and operator space theory. J. Math. Phys. 57, 015220 (2016)
Tomczak-Jaegermann, N.: Banach–Mazur Distances and Finite Dimensional Operator Ideals. Longman Scientific & Technical, Harlow (1989)
Tsirelson, B.S.: Quantum analogues of the Bell inequalities. The case of two spatially separated domains. J. Sov. Math. 36(4), 557–570 (1987)
Tsirelson, B.S.: Some results and problems on quantum Bell-type inequalities. Hadron. J. Suppl. 8(4), 329–345 (1993)
Acknowledgements
This research was funded by the Spanish MINECO through Grant No. MTM2017-88385-P, MTM2014-54240-P and by the Comunidad de Madrid through grant QUITEMAD-CM P2018/TCS4342. We also acknowledge funding from SEV-2015-0554-16-3 and “Ramón y Cajal program” RYC-2012-10449 (C. P.).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Rey, A.A., Palazuelos, C. & Villanueva, I. Optimal non-signalling violations via tensor norms. Rev Mat Complut 33, 661–694 (2020). https://doi.org/10.1007/s13163-019-00329-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13163-019-00329-8