[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Age-related regulation of excitation–contraction coupling in rat heart

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Hearts from subjects with different ages have different Ca2+ signaling. Release of Ca2+ from intracellular stores in response to an action potential initiates cardiac contraction. Both depolarization-stimulated and spontaneous Ca2+ releases, Ca2+ transients and Ca2+ sparks, demonstrate the main events of excitation–contraction coupling (ECC). Global increase in free Ca2+ concentration ([Ca2+] i ) consists of summation of Ca2+ release events in cardiomyocytes. Since the Ca2+ flux induced by Ca2+ sparks reports a summation of ryanodine-sensitive Ca2+ release channels (RyR2s)’s behavior in a spark cluster, evaluation of the properties of Ca2+ sparks and Ca2+ transients may provide insight into the role of RyR2s on altered heart function between 3-month-old (young adult) and 6-month-old (mature adult) rats. Basal [Ca2+] i and Ca2+ sparks frequency were significantly higher in mature adult rats compared to those of young adults. Moreover, amplitudes of Ca2+ sparks and Ca2+ transients were significantly smaller in mature adults than those of young adults with longer time courses. A smaller L-type Ca2+ current density and decreased SR Ca2+ load was observed in mature adult rats. In addition, RyR2s were markedly hyperphosphorylated, and phosphorylation levels of PKA and CaMKII were higher in heart from mature adults compared to those of young adults, whereas their SERCA protein levels were similar. Our data demonstrate that hearts from rats with different ages have different Ca2+ signaling including hyperphosphorylation of RyR2s and higher basal [Ca2+] i together with increased oxidized protein-thiols in mature adult rats compared to those of young adults, which play important roles in ECC. Finally, we report that ECC efficiency changes with age during maturation, partially related with an increased cellular oxidation level leading to reduced free protein-thiols in cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bellinger AM, Reiken S, Carlson C, Mongillo M, Liu X, Rothman L, Matecki S, Lacampagne A, Marks AR (2009) Hypernitrosylated ryanodine receptor calcium release channels are leaky SR channels in dystrophic muscle. Nat Med 15:325–330

    Article  PubMed  CAS  Google Scholar 

  2. Bers DM, Bridge JH (1989) Relaxation of rabbit ventricular muscle by Na–Ca exchange and sarcoplasmic reticulum calcium pump. Ryanodine and voltage sensitivity. Circ Res 65:334–342

    PubMed  CAS  Google Scholar 

  3. Bouallegue A, Pandey NR, Srivastava AK (2009) CaMKII knockdown attenuates H2O2-induced phosphorylation of ERK1/2, PKB/Akt, and IGF-1R in vascular smooth muscle cells. Free Radic Biol Med 47:858–866

    Article  PubMed  CAS  Google Scholar 

  4. Capasso JM, Aronson RS, Sonnenblick EH (1982) Reversible alterations in excitation–contraction coupling during myocardial hypertrophy in rat papillary muscle. Circ Res 51:189–195

    PubMed  CAS  Google Scholar 

  5. Cicogna AC, Padovani CR, Nardi SC, Okoshi MP (1993) Effects of aging on mechanical performance of Wistar rat papillary muscles. Arq Bras Cardiol 60:215

    PubMed  CAS  Google Scholar 

  6. Curran J, Hinton MJ, Rios E, Bers DM, Shannon TR (2007) Beta-adrenergic enhancement of sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated by calcium/calmodulin-dependent protein kinase. Circ Res 100:391–398

    Article  PubMed  CAS  Google Scholar 

  7. Dzhura I, Wu Y, Colbran RJ, Balser JR, Anderson ME (2000) Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels. Nat Cell Biol 2(3): 173–177

    Google Scholar 

  8. Eckel J, Gerlach-Eskuchen E, Reinauer H (1991) Alpha-adrenoceptor-mediated increase in cytosolic free calcium in isolated cardiac myocytes. J Mol Cell Cardiol 23:617–625

    Article  PubMed  CAS  Google Scholar 

  9. Eisner DA, Kashimura T, O’Neill SC, Venetucci LA, Trafford AW (2008) What role does modulation of he ryanodine receptor play in cardiac inotropy and arrhythmogenesis? J Mol Cell Cardiol 46:474–481

    Article  PubMed  Google Scholar 

  10. Folkow B, Svanborg A (1993) Physiology of cardiovascular aging. Physiol Rev 73:725

    PubMed  CAS  Google Scholar 

  11. Gaballa MA, Eckhart AD, Koch WJ, Goldman S (2000) Vascular beta-adrenergic receptor adenylyl cyclase system in maturation and aging. J Mol Cell Cardiol 32:1745–1755

    Article  PubMed  CAS  Google Scholar 

  12. Ganguly PK, Pierce GN, Dhalla KS, Dhalla NS (1983) Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am J Physiol 244:528–535

    Google Scholar 

  13. Gómez AM, Schuster I, Fauconnier J, Prestle J, Hasenfuss G, Richard S (2004) FBP12.6 overexpression decreases Ca2+ spark amplitude but enhances [Ca2+] i transient in rat cardiac myocytes. Am J Physiol Heart Circ Physiol 287:1987–1993

    Article  Google Scholar 

  14. Guatimosim S, Dilly K, Santana LF, Saleet JM, Sobie EA, Lederer WJ (2000) Local Ca(2+) signaling and EC coupling in heart: Ca(2+) sparks and the regulation of the [Ca(2+)](i) transient. J Mol Cell Cardiol 34:941–950

    Article  Google Scholar 

  15. Hook SS, Means AR (2001) Ca(2+)/CaM-dependent kinases: from activation to function. Annu Rev Pharmacol Toxicol 41: 471–505

    Google Scholar 

  16. Howlett SE, Grandy SA, Ferrier GR (2006) Calcium spark properties in ventricular myocytes are altered in aged mice. Am J Physiol Heart Circ Physiol 290:1566–1574

    Article  Google Scholar 

  17. Janczewski AM, Spurgeon HA, Lakatta EG (2002) Action potential prolongation in cardiac myocytes of old rats is an adaptation to sustain youthful intracellular Ca2+ regulation. J Mol Cell Cardiol 34:641–648

    Article  PubMed  CAS  Google Scholar 

  18. Jenner TL, Rose’meyer RB (2006) Adenosine A(3) receptor mediated coronary vasodilation in the rat heart: changes that occur with maturation. Mech Ageing Dev 127:264–273

    Article  PubMed  CAS  Google Scholar 

  19. Jiang YH, Klein MG, Schneider MF (1999) Numerical simulation of Ca(2+) “Sparks” in skeletal muscle. Biophys J 77:2333–2357

    Article  PubMed  CAS  Google Scholar 

  20. Jones LR, Simmerman HK, Wilson WW, Gurd FR, Wegener AD (1985) Purification and characterization of phospholamban from canine cardiac sarcoplasmic reticulum. J Biol Chem 260:7721–7730

    PubMed  CAS  Google Scholar 

  21. Leblanc N, Chartier D, Gosselin H, Rouleau JL (1998) Age and gender differences in excitation–contraction coupling of the rat ventricle. J Physiol 511:533–548

    Article  PubMed  CAS  Google Scholar 

  22. Lim G, Venetucci L, Eisner DA, Casadei B (2008) Does nitric oxide modulate cardiac ryanodine receptor function? Implications for excitation–contraction coupling. Cardiovasc Res 77:256–264

    Article  PubMed  CAS  Google Scholar 

  23. Lou LL, Lloyd SJ, Schulman H (1986) Activation of the multifunctional Ca2+/calmodulin-dependent protein kinase by autophosphorylation: ATP modulates production of an autonomous enzyme. Proc Natl Acad Sci U S A 83(24): 9497–9501

    Google Scholar 

  24. Maier LS, Bers DM (2002) Calcium, calmodulin, and calcium-calmodulin kinase II: heartbeat to heartbeat and beyond. J Mol Cell Cardiol 34(8): 919–39

    Google Scholar 

  25. Marinov BS, Olojo RO, Xia R, Abramson JJ (2007) Non-thiol reagents regulate ryanodine receptor function by redox interactions that modify reactive thiols. Antioxid Redox Signal 9:609–621

    Article  PubMed  CAS  Google Scholar 

  26. Marks AR, Priori S, Memmi M, Kontula K, Laitinen PJ (2002) Involvement of the cardiac ryanodine receptor/calcium release channel in catecholaminergic polymorphic ventricular tachycardia. J Cell Physiol 190:1–6

    Article  PubMed  CAS  Google Scholar 

  27. Marx SO, Reiken S, Hisamatsu Y, Gaburjakova M, Gaburjakova J, Yang YM, Rosemblit N, Marks AR (2001) Phosphorylation-dependent regulation of ryanodine receptors: a novel role for leucine/isoleucine zippers. J Cell Biol 153:699–708

    Article  PubMed  CAS  Google Scholar 

  28. Noda N, Hayashi H, Miyata H, Suzuki S, Kobayashi A, Yamazaki N (1992) Cytosolic Ca2+ concentration and pH of diabetic rat myocytes during metabolic inhibition. J Mol Cell Cardiol 24:435–446

    Article  PubMed  CAS  Google Scholar 

  29. Palomeque J, Rueda OV, Sapia L, Valverde CA, Salas M, Petroff MV, Mattiazzi A (2009) Angiotensin II-induced oxidative stress resets the Ca2+ dependence of Ca2+-calmodulin protein kinase II and promotes a death pathway conserved across different species. Circ Res 105:1204–1212

    Article  PubMed  CAS  Google Scholar 

  30. Pepe S, Tsuchiya N, Lakatta EG, Hansford RG (1999) PUFA and aging modulate cardiac mitochondrial membrane lipid composition and Ca2+ activation of PDH. Am J Physiol 276:149–158

    Google Scholar 

  31. Shetty PK, Huang FL, Huang KP (2008) Ischemia-elicited oxidative modulation of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 283:5389–5401

    Article  PubMed  CAS  Google Scholar 

  32. Shimoni Y, Liu XF (2004) Gender differences in ANG II levels and action on multiple K+ current modulation pathways in diabetic rats. Am J Physiol Heart Circ Physiol 287:311–319

    Article  Google Scholar 

  33. Sobel H (1973) Endocrine changes associated with maturation and their possible role in the natural history of ischemic heart disease. J Am Coll Health Assoc 22:101–109

    PubMed  CAS  Google Scholar 

  34. Tuncay E, Seymen AA, Tanriverdi E, Yaras N, Tandogan B, Ulusu NN, Turan B (2007) Gender-related differential effects of Omega-3E treatment on diabetes-induced left ventricular dysfunction. Mol Cell Biochem 304:255–263

    Article  PubMed  CAS  Google Scholar 

  35. Villalobos-Molina R, Gil-Flores M, Gallardo-Ortiz IA, Lopez-Guerrero JJ, Ibarra M (2004) The hypotensive effect of BMY 7378 involves central 5-HT1A receptor stimulation in the adult but not in the young rat. Arch Med Res 35:495–498

    Article  PubMed  CAS  Google Scholar 

  36. Wehrens XH, Lehnart SE, Reiken SR, Marks AR (2004) Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res 94:e61–e70

    Article  PubMed  CAS  Google Scholar 

  37. Wildenthal K (1973) Maturation of responsiveness to cardioactive drugs. Differential effects of acetylcholine, norepinephrine, theophylline, tyramine, glucagon, and dibutyryl cyclic AMP on atrial rate in hearts of fetal mice. J Clin Invest 52:2250–2258

    Article  PubMed  CAS  Google Scholar 

  38. Wittköpper K, Fabritz L, Neef S, Ort KR, Grefe C, Unsöld B, Kirchhof P, Maier LS, Hasenfuss G, Dobrev D, Eschenhagen T, El-Armouche A (2010) Constitutively active phosphatase inhibitor-1 improves cardiac contractility in young mice but is deleterious after catecholaminergic stress and with aging. J Clin Invest 120:617–627

    PubMed  Google Scholar 

  39. Yaras N, Sariahmetoglu M, Bilginoglu A, Aydemir-Koksoy A, Onay-Besikci A, Turan B, Schulz R (2008) Protective action of doxycycline against diabetic cardiomyopathy in rats. Br J Pharmacol 155:1174–1184

    Article  PubMed  CAS  Google Scholar 

  40. Yaras N, Tuncay E, Purali N, Sahinoglun B, Vassort G, Turan B (2007) Sex-related effects on diabetes-induced alterations in calcium release in the rat heart. Am J Physiol Heart Circ Physiol 293:3584–3592

    Article  Google Scholar 

  41. Yaras N, Ugur M, Ozdemir S, Gurdal H, Purali N, Lacampagne A, Vassort G, Turan B (2005) Effects of diabetes on ryanodine receptor Ca release channel (RyR2) and Ca2+ homeostasis in rat heart. Diabetes 54:3082–3088

    Article  PubMed  CAS  Google Scholar 

  42. Zhu X, Altschafl BA, Hajjar RJ, Valdivia HH, Schmidt U (2005) Altered Ca2+ sparks and gating properties of ryanodine receptors in aging cardiomyocytes. Cell Calcium 37:583–591

    Article  PubMed  CAS  Google Scholar 

  43. Ziman AP, Gómez-Viquez NL, Bloch RJ, Lederer WJ (2010) Excitation–contraction coupling changes during postnatal cardiac development. J Mol Cell Cardiol 48:379–386

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No potential conflicts of interest relevant to this article were reported.

This work has been supported by grant of TUBITAK (Projects No: SBAG-107S304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belma Turan.

Additional information

Hilmi B. Kandilci and Erkan Tuncay are both first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandilci, H.B., Tuncay, E., Zeydanli, E.N. et al. Age-related regulation of excitation–contraction coupling in rat heart. J Physiol Biochem 67, 317–330 (2011). https://doi.org/10.1007/s13105-011-0077-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-011-0077-3

Keywords

Navigation