[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Abstract

To address challenges in the digital economy’s landscape of digital intelligence, large language models (LLMs) have been developed. Improvements in computational power and available resources have significantly advanced LLMs, allowing their integration into diverse domains for human life. Medical LLMs are essential application tools with potential across various medical scenarios. In this paper, we review LLM developments, focusing on the requirements and applications of medical LLMs. We provide a concise overview of existing models, aiming to explore advanced research directions and benefit researchers for future medical applications. We emphasize the advantages of medical LLMs in applications, as well as the challenges encountered during their development. Finally, we suggest directions for technical integration to mitigate challenges and potential research directions for the future of medical LLMs, aiming to meet the demands of the medical field better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

This is a review paper, and no data was generated during the study.

References

  1. McCue ME, McCoy AM (2017) The scope of big data in one medicine: unprecedented opportunities and challenges. Front Vet Sci 4:194

    Article  Google Scholar 

  2. Nilsson NJ (1982) Principles of artificial intelligence. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  3. Cao Y, Peng H, Yu PS (2020) Multi-information source Hin for medical concept embedding. Advances in knowledge discovery and data mining. Springer, Berlin, pp 396–408

    Chapter  Google Scholar 

  4. Silberg WM, Lundberg GD, Musacchio RA (1997) Assessing, controlling, and assuring the quality of medical information on the internet: caveant lector et viewor-let the reader and viewer beware. JAMA 277:1244–1245

    Article  Google Scholar 

  5. Duggan C, Bates I (2008) Medicine information needs of patients: the relationships between information needs, diagnosis and disease. Quality Saf Health Care 17:85

    Article  Google Scholar 

  6. Waitzkin H (1985) Information giving in medical care. J Health Soc Behav 26:81–101

    Article  Google Scholar 

  7. Carpineto C, Romano G (2012) A survey of automatic query expansion in information retrieval. ACM Comput Surv 44:1–50

    Article  Google Scholar 

  8. Gan W, Qi Z, Wu J, Lin JC-W (2023) Large language models in education: vision and opportunities. In: IEEE international conference on big data, IEEE, pp 4776–4785

  9. Shanahan M (2024) Talking about large language models. Commun ACM 67:68–79

    Article  Google Scholar 

  10. Xi Z, Chen W, Guo X, He W, Ding Y, Hong B, Zhang M, Wang J, Jin S, Zhou E, et al (2023) The rise and potential of large language model based agents: a survey, arXiv preprint arXiv:2309.07864

  11. Zhao WX, Zhou K, Li J, Tang T, Wang X, Hou Y, Min Y, Zhang B, Zhang J, Dong Z, et al (2023) A survey of large language models, arXiv preprint arXiv:2303.18223

  12. Lin T, Wang Y, Liu X, Qiu X (2022) A survey of Transformers. AI Open 3:111–132

    Article  Google Scholar 

  13. Gan W, Wan S, Yu PS (2023) Model-as-a-service (MaaS): a survey. In: IEEE international conference on big data, IEEE, pp 4636–4645

  14. Liu S, Peng C, Wang C, Chen X, Song S (2023) icsBERTs: optimizing pre-trained language models in intelligent customer service. Proc Comput Sci 222:127–136

    Article  Google Scholar 

  15. Tarcar AK, Tiwari A, Dhaimodker VN, Rebelo P, Desai R, Rao D (2019) Healthcare NER models using language model pretraining, arXiv preprint arXiv:1910.11241

  16. Wu S, Irsoy O, Lu S, Dabravolski V, Dredze M, Gehrmann S, Kambadur P, Rosenberg D, Mann G (2023) BloombergGPT: a large language model for finance, arXiv preprint arXiv:2303.17564

  17. Gupta U (2023) GPT-InvestAR: Enhancing stock investment strategies through annual report analysis with large language models, arXiv preprint arXiv:2309.03079

  18. Kasneci E, Seßler K, Küchemann S, Bannert M, Dementieva D, Fischer F, Gasser U, Groh G, Günnemann S, Hüllermeier E et al (2023) ChatGPT for good? On opportunities and challenges of large language models for education. Learn Individ Differ 103:102274

    Article  Google Scholar 

  19. Roemmele M, Gordon AS (2018) Automated assistance for creative writing with an RNN language model. In: The 23rd international conference on intelligent user interfaces companion, ACM, pp 1–2

  20. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444

    Article  Google Scholar 

  21. Chowdhary K, Chowdhary K (2020) Natural language processing. Fundamentals of artificial intelligence. Springer, Berlin, pp 603–649

    Chapter  Google Scholar 

  22. Huang H, Zheng O, Wang D, Yin J, Wang Z, Ding S, Yin H, Xu C, Yang R, Zheng Q et al (2023) ChatGPT for shaping the future of dentistry: the potential of multi-modal large language model. Int J Oral Sci 15:29

    Article  Google Scholar 

  23. Goel A, Gueta A, Gilon O, Liu C, Erell S, Nguyen LH, Hao X, Jaber B, Reddy S, Kartha R, et al (2023) LLMs accelerate annotation for medical information extraction. In: Machine learning for health, PMLR, pp 82–100

  24. Wilhelm TI, Roos J, Kaczmarczyk R (2023) Large language models for therapy recommendations across 3 clinical specialties: comparative study. J Med Internet Res 25:e49324

    Article  Google Scholar 

  25. Minssen T, Vayena E, Cohen IG (2023) The challenges for regulating medical use of ChatGPT and other large language models. J Am Med Assoc 330:315–316

    Article  Google Scholar 

  26. Clusmann J, Kolbinger FR, Muti HS, Carrero ZI, Eckardt J-N, Laleh NG, Löffler CML, Schwarzkopf S-C, Unger M, Veldhuizen GP et al (2023) The future landscape of large language models in medicine. Commun Med 3:141

    Article  Google Scholar 

  27. Thirunavukarasu AJ, Ting DSJ, Elangovan K, Gutierrez L, Tan TF, Ting DSW (2023) Large language models in medicine. Nat Med 29:1930–1940

    Article  Google Scholar 

  28. Singhal K, Azizi S, Tu T, Mahdavi SS, Wei J, Chung HW, Scales N, Tanwani A, Cole-Lewis H, Pfohl S et al (2023) Large language models encode clinical knowledge. Nature 620:172–180

    Article  Google Scholar 

  29. Karabacak M, Margetis K (2023) Embracing large language models for medical applications: Opportunities and challenges, Cureus 15

  30. Zhou H, Gu B, Zou X, Li Y, Chen SS, Zhou P, Liu J, Hua Y, Mao C, Wu X, et al (2023) A survey of large language models in medicine: progress, application, and challenge, arXiv preprint arXiv:2311.05112

  31. Kim JK, Chua M, Rickard M, Lorenzo A (2023) ChatGPT and large language model (LLM) chatbots: the current state of acceptability and a proposal for guidelines on utilization in academic medicine. J Pediatr Urol 19(5):598–604

    Article  Google Scholar 

  32. Hu Z, Yang Z, Liang X, Salakhutdinov R, Xing EP (2017) Toward controlled generation of text. In: International conference on machine learning, PMLR, pp 1587–1596

  33. SarkarK, Liu L, Golyanik V, Theobalt C (2021) HumanGAN: a generative model of human images. In: International conference on 3D vision, IEEE, pp 258–267

  34. Kim S, Lee S-G, Song J, Kim J, Yoon S (2019) FloWaveNet: a generative flow for raw audio. In: International conference on machine learning, PMLR, pp 3370–3378

  35. Wu J, Gan W, Chen Z, Wan S, Lin H (2023) AI-generated content (AIGC): a survey, arXiv preprint arXiv:2304.06632

  36. Han X, Zhang Z, Ding N, Gu Y, Liu X, Huo Y, Qiu J, Yao Y, Zhang A, Zhang L et al (2021) Pre-trained models: past, present and future. AI Open 2:225–250

    Article  Google Scholar 

  37. Zeng F, Gan W, Wang Y, Yu PS (2023) Distributed training of large language models. In: IEEE 29th international conference on parallel and distributed systems, IEEE, pp 840–847

  38. Howard J, Ruder S (2018) Universal language model fine-tuning for text classification, In: The 56th annual meeting of the ACL, pp 328–339

  39. Grossberg S (2013) Recurrent neural networks. Scholarpedia 8:1888

    Article  Google Scholar 

  40. Wu J, Gan W, Chen Z, Wan S, Yu PS (2023) Multimodal large language models: a survey. In: IEEE international conference on big data, IEEE, pp 2247–2256

  41. Cambria E, White B (2014) Jumping NLP curves: a review of natural language processing research. IEEE Comput Intell Mag 9:48–57

    Article  Google Scholar 

  42. Harshvardhan G, Gourisaria MK, Pandey M, Rautaray SS (2020) A comprehensive survey and analysis of generative models in machine learning. Comput Sci Rev 38:100285

    Article  MathSciNet  Google Scholar 

  43. Brown PF, Della Pietra VJ, de Souza PV, Lai JC, Mercer RL (1992) Class-based N-gram models of natural language. Comput Sci Rev 18:467–480

    Google Scholar 

  44. Blunsom P (2004) Hidden Markov models. Lecture Notes 15:48

    Google Scholar 

  45. Yu Y, Si X, Hu C, Zhang J (2019) A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput 31:1235–1270

    Article  MathSciNet  Google Scholar 

  46. Tweedie RL (2001) Markov chains: structure and applications. Handb Stat 19:817–851

    Article  MathSciNet  Google Scholar 

  47. Qiao M, Bian W, Da Xu RY, Tao D (2015) Diversified hidden Markov models for sequential labeling. IEEE Trans Knowl Data Eng 27:2947–2960

    Article  Google Scholar 

  48. Käll L, Krogh A, Sonnhammer EL (2005) An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics 21:i251–i257

    Article  Google Scholar 

  49. Philipp G, Song D, Carbonell JG (2017) The exploding gradient problem demystified-definition, prevalence, impact, origin, tradeoffs, and solutions, arXiv preprint arXiv:1712.05577

  50. Lippi M, Montemurro MA, Degli-Esposti M, Cristadoro G (2019) Natural language statistical features of LSTM-generated texts. IEEE Trans Neural Netw Learn Syst 30:3326–3337

    Article  Google Scholar 

  51. Church KW (2017) Word2Vec. Nat Lang Eng 23:155–162

    Article  Google Scholar 

  52. Ethayarajh K (2019) How contextual are contextualized word representations? Comparing the geometry of BERT, ELMo, and GPT-2 embeddings, arXiv preprint arXiv:1909.00512

  53. Roumeliotis KI, Tselikas ND (2023) ChatGPT and open-AI models: a preliminary review. Future Internet 15:192

    Article  Google Scholar 

  54. Kenton JDM-WC, Toutanova LK (2019) BERT: Pre-training of deep bidirectional transformers for language understanding. In: The NAACL-HLT, vol 1, ACL, p 2

  55. Luo Y, Tang J, Yan J, Xu C, Chen Z (2014) Pre-trained multi-view word embedding using two-side neural network. In: The AAAI conference on artificial intelligence, p 28

  56. Zheng J, Cai F, Chen H, de Rijke M (2020) Pre-train, interact, fine-tune: a novel interaction representation for text classification. Inf Process Manage 57:102215

    Article  Google Scholar 

  57. Yohannes HM, Amagasa T (2022) Named-entity recognition for a low-resource language using pre-trained language model. In: The 37th ACM/SIGAPP symposium on applied computing, ACM, pp 837–844

  58. Gan W, Lin JC-W, Chao H-C, Zhan J (2017) Data mining in distributed environment: a survey. Wiley Interdiscip Rev Data Min Knowl Discov 7:e1216

    Article  Google Scholar 

  59. Wang Q, Xu J, Chen H, He B (2017) Two improved continuous bag-of-word models. In: International joint conference on neural networks, IEEE, pp 2851–2856

  60. McCormick C (2016) Word2Vec tutorial-the skip-gram model. Available online at: http://www.mccormickml.com

  61. Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, Cistac P, Rault T, Louf R, Funtowicz M, et al (2020) Transformers: state-of-the-art natural language processing. In: The conference on empirical methods in natural language processing: system demonstrations, ACL, pp 38–45

  62. Zhang H, Dang M, Peng N, Van den Broeck G (2023) Tractable control for autoregressive language generation. In: International conference on machine learning, PMLR, pp 40932–40945

  63. Dey R, Salem FM (2017) Gate-variants of gated recurrent unit (GRU) neural networks. In: IEEE 60th international midwest symposium on circuits and systems, IEEE, pp 1597–1600

  64. Mikolov T, Karafiát M, Burget L, Cernockỳ J, Khudanpur S (2010) Recurrent neural network based language model. Interspeech 2:1045–1048

    Article  Google Scholar 

  65. Han K, Xiao A, Wu E, Guo J, Xu C, Wang Y (2021) Transformer in transformer. Adv Neural Inf Process Syst 34:15908–15919

    Google Scholar 

  66. Tehranineshat B, Rakhshan M, Torabizadeh C, Fararouei M (2019) Compassionate care in healthcare systems: a systematic review. J Natl Med Assoc 111:546–554

    Google Scholar 

  67. Vellido A (2020) The importance of interpretability and visualization in machine learning for applications in medicine and health care. Neural Comput Appl 32:18069–18083

    Article  Google Scholar 

  68. Zink W, Bernhard M, Keul W, Martin E, Völkl A, Gries A (2004) Invasive techniques in emergency medicine: I. Practice-oriented training concept to ensure adequately qualified emergency physicians. Der Anaesthesist 53:1086–1092

    Article  Google Scholar 

  69. Pollack CV Jr, Amin A, Talan DA (2012) Emergency medicine and hospital medicine: a call for collaboration. Am J Med 125:826-e1

    Article  Google Scholar 

  70. Muller H, Mayrhofer MT, Van Veen E-B, Holzinger A (2021) The ten commandments of ethical medical AI. Computer 54:119–123

    Article  Google Scholar 

  71. Bhise V, Rajan SS, Sittig DF, Morgan RO, Chaudhary P, Singh H (2018) Defining and measuring diagnostic uncertainty in medicine: a systematic review. J Gen Intern Med 33:103–115

    Article  Google Scholar 

  72. Omiye JA, Gui H, Rezaei SJ, Zou J, Daneshjou R (2024) Large language models in medicine: the potentials and pitfalls: a narrative review. Ann Intern Med 177:210–220

    Article  Google Scholar 

  73. Puladi B, Gsaxner C, Kleesiek J, Hölzle F, Röhrig R, Egger J (2023) The impact and opportunities of large language models like ChatGPT in oral and maxillofacial surgery: a narrative review, Int J Oral Maxillofac Surg

  74. Grünebaum A, Chervenak J, Pollet SL, Katz A, Chervenak FA (2023) The exciting potential for ChatGPT in obstetrics and gynecology. Am J Obstet Gynecol 228:696–705

    Article  Google Scholar 

  75. Schwartz IS, Link KE, Daneshjou R, Cortés-Penfield N (2023) Black box warning: large language models and the future of infectious diseases consultation. Clin Infect Dis 78(4):860–866

    Article  Google Scholar 

  76. Feldman J, Thomas-Bachli A, Forsyth J, Patel ZH, Khan K (2019) Development of a global infectious disease activity database using natural language processing, machine learning, and human expertise. J Am Med Inform Assoc 26:1355–1359

    Article  Google Scholar 

  77. Biswas SS (2023) Role of chat GPT in public health. Ann Biomed Eng 51:868–869

    Article  Google Scholar 

  78. Akinci D’Antonoli T, Stanzione A, Bluethgen C, Vernuccio F, Ugga L, Klontzas ME, Cuocolo R, Cannella R, Koçak B (2023) Large language models in radiology: fundamentals, applications, ethical considerations, risks, and future directions, Diagn Intervent Radiol, Epub–ahead

  79. Alberts IL, Mercolli L, Pyka T, Prenosil G, Shi K, Rominger A, Afshar-Oromieh A (2023) Large language models (LLM) and ChatGPT: what will the impact on nuclear medicine be? Eur J Nucl Med Mol Imaging 50:1549–1552

    Article  Google Scholar 

  80. Chakraborty C, Bhattacharya M, Lee S-S (2023) Artificial intelligence enabled ChatGPT and large language models in drug target discovery, drug discovery, and development. Mol Therapy-Nucl Acids 33:866–868

    Article  Google Scholar 

  81. Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, Kang J (2020) BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36:1234–1240

    Article  Google Scholar 

  82. Luo R, Sun L, Xia Y, Qin T, Zhang S, Poon H, Liu T-Y (2022) BioGPT: generative pre-trained transformer for biomedical text generation and mining. Brief Bioinf 23:bbac409

    Article  Google Scholar 

  83. Jeblick K, Schachtner B, Dexl J, Mittermeier A, Stüber AT, Topalis J, Weber T, Wesp P, Sabel BO, Ricke J et al (2023) ChatGPT makes medicine easy to swallow: an exploratory case study on simplified radiology reports. Eur Radiol 33:1–9

    Google Scholar 

  84. Lecler A, Duron L, Soyer P (2023) Revolutionizing radiology with GPT-based models: current applications, future possibilities and limitations of ChatGPT. Diagn Intervent Imaging 104:269–274

    Article  Google Scholar 

  85. Shaikh F, Dehmeshki J, Bisdas S, Roettger-Dupont D, Kubassova O, Aziz M, Awan O (2021) Artificial intelligence-based clinical decision support systems using advanced medical imaging and radiomics. Curr Probl Diagn Radiol 50:262–267

    Article  Google Scholar 

  86. Kraljevic Z, Shek A, Bean D, Bendayan R, Teo J, Dobson R (2021) MedGPT: medical concept prediction from clinical narratives, arXiv preprint arXiv:2107.03134

  87. Shi X, Xu J, Ding J, Pang J, Liu S, Luo S, Peng X, Lu L, Yang H, Hu M, et al (2023) LLM-Mini-Cex: Automatic evaluation of large language model for diagnostic conversation, arXiv preprint arXiv:2308.07635

  88. Zhou J, He X, Sun L, Xu J, Chen X, Chu Y, Zhou L, Liao X, Zhang B, Gao X (2023) SkinGPT-4: an interactive dermatology diagnostic system with visual large language model. MedRXiv: 2023–2006

  89. Xiong H, Wang S, Zhu Y, Zhao Z, Liu Y, Huang L, Wang Q, Shen D (2023) DoctorGLM: Fine-tuning your chinese doctor is not a herculean task, arXiv preprint arXiv:2304.01097

  90. Wang H, Liu C, Xi N, Qiang Z, Zhao S, Qin B, Liu T (2023a) Huatuo: tuning llama model with chinese medical knowledge, arXiv preprint arXiv:2304.06975

  91. Wang G, Yang G, Du Z, Fan L, Li X (2023b) ClinicalGPT: large language models finetuned with diverse medical data and comprehensive evaluation, arXiv preprint arXiv:2306.09968

  92. Lin X, Xu C, Xiong Z, Zhang X, Ni N, Ni B, Chang J, Pan R, Wang Z, Yu F et al (2023) PanGu drug model: learn a molecule like a human. Sci China Life Sci 66:879–882

    Article  Google Scholar 

  93. Fang X, Wang F, Liu L, He J, Lin D, Xiang Y, Zhu K, Zhang X, Wu H, Li H et al (2023) A method for multiple-sequence-alignment-free protein structure prediction using a protein language model. Nature Mach Intell 5:1087–1096

    Article  Google Scholar 

  94. Mao J, Wang J, Zeb A, Cho K-H, Jin H, Kim J, Lee O, Wang Y, No KT (2023) Transformer-based molecular generative model for antiviral drug design. J Chem Inf Model 64(7):2733–2745

    Article  Google Scholar 

  95. Luo Y, Liu XY, Yang K, Huang K, Hong M, Zhang J, Wu Y, Nie Z (2023) Towards unified AI drug discovery with multiple knowledge modalities, arXiv preprint arXiv:2305.01523

  96. Zhu M, Chen Z, Yuan Y (2021) DSI-Net: deep synergistic interaction network for joint classification and segmentation with endoscope images. IEEE Trans Med Imaging 40:3315–3325

    Article  Google Scholar 

  97. Lei W, Wei X, Zhang X, Li K, Zhang S (2023), MedLSAM: localize and segment anything model for 3d medical images, arXiv preprint arXiv:2306.14752

  98. Li Z, Li Y, Li Q, Wang P, Guo D, Lu L, Jin D, Zhang Y, Hong Q (2023) Lvit: language meets vision transformer in medical image segmentation. IEEE Trans Med Imaging 43:96–107

    Article  Google Scholar 

  99. Koleilat T, Asgariandehkordi H, Rivaz H, Xiao Y (2024) MedCLIP-SAM: bridging text and image towards universal medical image segmentation, arXiv preprint arXiv:2403.20253

  100. Venigalla A, Frankle J, Carbin M (2022) PubMed GPT: a domain-specific large language model for biomedical text, Available online at: https://www.mosaicml.com/blog/introducing-pubmed-gpt

  101. Yunxiang L, Zihan L,  Kai Z, Ruilong D, You Z (2023) ChatDoctor: a medical chat model fine-tuned on llama model using medical domain knowledge, arXiv preprint arXiv:2303.14070

  102. Bao Z, Chen W, Xiao S, Ren K, Wu J, Zhong C, Peng J, Huang X, Wei Z (2023) DISC-MedLLM: Bridging general large language models and real-world medical consultation, arXiv preprint arXiv:2308.14346

  103. Chen Y, Wang Z, Xing X, Xu Z, Fang K, Wang J, Li S, Wu J, Liu Q, Xu X, et al (2023) BianQue: balancing the questioning and suggestion ability of health LLMs with multi-turn health conversations polished by ChatGPT, arXiv preprint arXiv:2310.15896

  104. Qiu H, He H, hang S, Li A, Lan Z (2023) SMILE: single-turn to multi-turn inclusive language expansion via ChatGPT for mental health support, arXiv preprint arXiv:2305.00450

  105. Wu C, Lin W, Zhang X, Zhang Y, Xie W, Wang Y (2024) PMC-LLaMA: toward building open-source language models for medicine. J Am Med Inf Assoc, ocae045

  106. Liu F, Zhu T, Wu X, Yang B, You C, Wang C, Lu L, Liu Z, Zheng Y, Sun X et al (2023) A medical multimodal large language model for future pandemics. NPJ Digit Med 6:226

    Article  Google Scholar 

  107. He J, Li P, Liu G, Zhao Z, Zhong S (2024) PeFoMed: parameter efficient fine-tuning on multimodal large language models for medical visual question answering, arXiv preprint arXiv:2401.02797

  108. Wang J, Zhang G, Wang W, Zhang K, Sheng Y (2021) Cloud-based intelligent self-diagnosis and department recommendation service using Chinese medical BERT. J Cloud Comput 10:4

    Article  Google Scholar 

  109. Yang X, Chen A, PourNejatian N, Shin HC, Smith KE, Parisien C, Compas C, Martin C, Costa AB, Flores MG et al (2022) A large language model for electronic health records. NPJ Digit Med 5:194

    Article  Google Scholar 

  110. Zeng A, Liu X, Du Z, Wang Z, Lai H, Ding M, Yang Z, Xu Y, Zheng W, Xia X, et al (2022) GLM-130B: an open bilingual pre-trained model, arXiv preprint arXiv:2210.02414

  111. Yang Y, Yin X, Yang H, Fei X, Peng H, Zhou K, Lai K, Shen J (2021) KGSynNet: a novel entity synonyms discovery framework with knowledge graph. Database systems for advanced applications. Springer, Berlin, pp 174–190

    Chapter  Google Scholar 

  112. Zhao X, Wu J, Peng H, Beheshti A, Monaghan JJ, McAlpine D, Hernandez-Perez H, Dras M, Dai Q, Li Y et al (2022) Deep reinforcement learning guided graph neural networks for brain network analysis. Neural Netw 154:56–67

    Article  Google Scholar 

  113. Koubaa A (2023) GPT-4 versus GPT-3.5: A concise showdown. Available online at: https://www.techrxiv.org/articles/preprint/GPT-4_vs_GPT-3_5_A_Concise_Showdown/22312330

  114. Zhao X, Liu H, Dai Q, Peng H, Bai X, Peng H (2023) Multi-omics sampling-based graph transformer for synthetic lethality prediction, In: IEEE international conference on bioinformatics and biomedicine, IEEE, pp 785–792

  115. Iannantuono GM, Bracken-Clarke D, Floudas CS, Roselli M, Gulley JL, Karzai F (2023) Applications of large language models in cancer care: current evidence and future perspectives. Front Oncol 13:1268915

    Article  Google Scholar 

  116. Yuan J, Bao P, Chen Z, Yuan M, Zhao J, Pan J, Xie Y, Cao Y, Wang Y, Wang Z, et al (2023) Advanced prompting as a catalyst: empowering large language models in the management of gastrointestinal cancers, Innov 521

  117. Benary M, Wang XD, Schmidt M, Soll D, Hilfenhaus G, Nassir M, Sigler C, Knödler M, Keller U, Beule D et al (2023) Leveraging large language models for decision support in personalized oncology. JAMA Netw Open 6:e2343689–e2343689

    Article  Google Scholar 

  118. Stade EC, Stirman SW, Ungar LH, Boland CL, Schwartz HA, Yaden DB, Sedoc J, DeRubeis RJ, Willer R, Eichstaedt JC (2024) Large language models could change the future of behavioral healthcare: a proposal for responsible development and evaluation. npj Mental Health Res 3:12

    Article  Google Scholar 

  119. Li T, Shetty S, Kamath A, Jaiswal A, Jiang X, Ding Y, Kim Y (2024) CancerGPT for few shot drug pair synergy prediction using large pretrained language models. npj Digit Med 7:40

    Article  Google Scholar 

  120. Gala D, Makaryus AN (2023) The utility of language models in cardiology: a narrative review of the benefits and concerns of ChatGPT-4. Int J Environ Res Public Health 20:6438

    Article  Google Scholar 

  121. Arslan S (2023) Exploring the potential of ChatGPT in personalized obesity treatment. Ann Biomed Eng 51(9):1887–1888

    Article  Google Scholar 

  122. Yang Z, Yao Z, Tasmin M, Vashisht P, Jang WS, Ouyang F, Wang B, Berlowitz D, Yu H (2023) Performance of multimodal gpt-4v on usmle with image: potential for imaging diagnostic support with explanations, medRxiv 2023–10

  123. Safranek CW, Sidamon-Eristoff AE, Gilson A, Chartash D (2023) The role of large language models in medical education. Appl Implic 9:e50945

    Google Scholar 

  124. Zeng G, Yang W, Ju Z, Yang Y, Wang S, Zhang R, Zhou M, Zeng J, Dong X, Zhang R et al (2020) Meddialog: large-scale medical dialogue datasets. In: The conference on empirical methods in natural language processing. pp 9241–9250

  125. Jin H, Chen R, Zhou A, Chen J, Zhang Y, Wang H (2024) GUARD: role-playing to generate natural-language jailbreakings to test guideline adherence of large language models, arXiv preprint arXiv:2402.03299

  126. Ye J, Chen X, Xu N, Zu C, Shao Z, Liu S, Cui Y, Zhou Z, Gong C, Shen Y, et al (2023) A comprehensive capability analysis of GPT-3 and GPT-3.5 series models, arXiv preprint arXiv:2303.10420

  127. Achiam J, Adler S, Agarwal S, Ahmad L, Akkaya I, Aleman FL, Almeida D, Altenschmidt J, Altman S, Anadkat S, et al (2023) GPT-4 technical report, arXiv preprint arXiv:2303.08774

  128. Dodge J, Ilharco G, Schwartz R, Farhadi A, Hajishirzi H, Smith N (2020) Fine-tuning pretrained language models: weight initializations, data orders, and early stopping, arXiv preprint arXiv:2002.06305

  129. Osborne JD, Flatow J, Holko M, Lin SM, Kibbe WA, Zhu L, Danila MI, Feng G, Chisholm RL (2009) Annotating the human genome with disease ontology. BMC Genom 10:S6

    Article  Google Scholar 

  130. Wang L, Lou Z, Jiang K, Shen G (2019) Bio-multifunctional smart wearable sensors for medical devices. Adv Intell Syst 1:1900040

    Article  Google Scholar 

  131. Huang R, Li H, Suomi R, Li C, Peltoniemi T (2023) Intelligent physical robots in health care: systematic literature review. J Med Internet Res 25:e39786

    Article  Google Scholar 

  132. Preum SM, Munir S, Ma M, Yasar MS, Stone DJ, Williams R, Alemzadeh H, Stankovic JA (2021) A review of cognitive assistants for healthcare: trends, prospects, and future directions. ACM Comput Surv 53:1–37

    Article  Google Scholar 

  133. Chen Z, Wu J, Gan W, Qi Z (2022) Metaverse security and privacy: an overview. In: IEEE international conference on big data, IEEE, pp 2950–2959

  134. Chen Z, Gan W, Wu J, Lin H, Chen C-M (2024) Metaverse for smart cities: a surveys. Internet Things Cyber-Phys Syst 4:203–216

    Article  Google Scholar 

  135. He J, Vechev M (2023) Controlling large language models to generate secure and vulnerable code, arXiv preprint arXiv:2302.05319

  136. Roman-Belmonte JM, De la Corte-Rodriguez H, Rodriguez-Merchan EC (2018) How blockchain technology can change medicine. Postgrad Med 130:420–427

    Article  Google Scholar 

  137. Chen C, Feng X, Zhou J, Yin J, Zheng X (2023) Federated large language model: a position paper, arXiv preprint arXiv:2307.08925

  138. Li Y, Liu C, Zou H, Che L, Sun P, Yan J, Liu W, Xu Z, Yang W, Dong L, et al (2023) Integrated wearable smart sensor system for real-time multi-parameter respiration health monitoring. Cell Rep Phys Sci 4

  139. Wu X, Liu C, Wang L, Bilal M (2023) Internet of things-enabled real-time health monitoring system using deep learning. Neural Comput Appl 14565–14576

  140. Dou Y, Huang Y, Zhao X, Zou H, Shang J, Lu Y, Yang X, Xiao J, Peng S (2024) ShennongMGS: An LLM-based chinese medication guidance system. ACM Trans Manage Inf Syst

  141. Raheja N, Manocha AK (2023) An IoT enabled secured clinical health care framework for diagnosis of heart diseases. Biomed Signal Process Control 80:104368

    Article  Google Scholar 

  142. Neo JRE, Ser JS, Tay SS (2024) Use of large language model-based chatbots in managing the rehabilitation concerns and education needs of outpatient stroke survivors and caregivers. Front Digital Health 6:1395501

    Article  Google Scholar 

  143. Revell G (2024) Generative AI applications in the health and well-being domain: Virtual and robotic assistance and the need for niche language models (NLMs). Applications of generative AI. Springer, Berlin, pp 189–207

    Chapter  Google Scholar 

  144. Chen K, Du Y, You T, Islam M, Guo Z, Jin Y, Chen G, Heng P-A (2024) LLM-assisted multi-teacher continual learning for visual question answering in robotic surgery, arXiv preprint arXiv:2402.16664

  145. Padmanabha A, Yuan J, Gupta J, Karachiwalla Z, Majidi C, Admoni H, Erickson Z (2024) Voicepilot: Harnessing LLMs as speech interfaces for physically assistive robots, arXiv preprint arXiv:2404.04066

  146. Dong XL, Moon S, Xu YE, Malik K, Yu Z (2023) Towards next-generation intelligent assistants leveraging LLM techniques. In: The 29th ACM SIGKDD conference on knowledge discovery and data mining. pp 5792–5793

  147. Vu MD, Wang H, Li Z, Chen J, Zhao S, Xing Z, Chen C (2024) GPTVoiceTasker: LLM-powered virtual assistant for smartphone, arXiv preprint arXiv:2401.14268

  148. Chen Z, Gan W, Sun J, Wu J, Yu PS (2024) Open metaverse: issues, evolution, and future. In: Companion proceedings of the ACM web conference, pp 1351–1360

  149. Yang R, Li L, Gan W, Chen Z, Qi Z (2023) The human-centric metaverse: a survey. In: Companion proceedings of the ACM web conference, pp 1296–1306

  150. El Saddik A, Ghaboura S (2023) The integration of ChatGPT with the Metaverse for medical consultations. IEEE Consum Electron Mag 13:6–15

    Article  Google Scholar 

  151. Pressman SM, Borna S, Gomez-Cabello CA, Haider SA, Haider C, Forte AJ (2024) AI and ethics: a systematic review of the ethical considerations of large language model use in surgery research. Healthcare 12:825

    Article  Google Scholar 

  152. Marks M, Haupt CE (2023) AI chatbots, health privacy, and challenges to HIPAA compliance. JAMA 330:309–310

    Article  Google Scholar 

  153. Lawlor RT (2023) The impact of GDPR on data sharing for European cancer research. Lancet Oncol 24:6–8

    Article  Google Scholar 

  154. Heston TF (2024) Prespective chapter: integrating large language models and blockchain in telemedicine, IntechOpen

  155. Chen M-Y, Chiang H-S, Sangaiah AK, Hsieh T-C (2020) Recurrent neural network with attention mechanism for language model. Neural Comput Appl 32:7915–7923

    Article  Google Scholar 

  156. Singh C, Askari A, Caruana R, Gao J (2023) Augmenting interpretable models with large language models during training. Nature Commun 14:7913

    Article  Google Scholar 

  157. Song Y, Zhang J, Tian Z, Yang Y, Huang M, Li D (2024) LLM-based privacy data augmentation guided by knowledge distillation with a distribution tutor for medical text classification, arXiv preprint arXiv:2402.16515

Download references

Acknowledgements

This research was supported in part by the National Natural Science Foundation of China (No. 62272196), the Natural Science Foundation of Guangdong Province (No. 2022A1515011861), Guangzhou Basic and Applied Basic Research Foundation (No. 2024A04J9971).

Author information

Authors and Affiliations

Authors

Contributions

Yanxin Zheng: paper reading and review, writing original draft. Wensheng Gan: conceptualization, review and editing, supervisor. Zefeng Chen and Zhenlian Qi: conceptualization, review and editing. Qian Liang and Philip S. Yu: review and editing.

Corresponding authors

Correspondence to Yanxin Zheng or Wensheng Gan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Gan, W., Chen, Z. et al. Large language models for medicine: a survey. Int. J. Mach. Learn. & Cyber. (2024). https://doi.org/10.1007/s13042-024-02318-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13042-024-02318-w

Keywords

Navigation