[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

An efficient microaneurysms detection approach in retinal fundus images

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Diabetic retinopathy (DR) is one of the retinal disorders and the leading cause of blindness worldwide. Microaneurysms (MA) is the first clinical indication of DR, and the detection of MA helps in early diagnosis. The retinal fundus image analysis helps screen DR through MA detection. In general, the MA detection method consists of preprocessing, enhancement, and classification stages. Preprocessing is crucial to improve the retinal features and reduce the imaging artifacts. Reducing these artifacts is one of the challenging research problems in retinal fundus image analysis. In this paper, a novel improved Non-Local Mean filter (INLMF) is proposed to remove the imaging artifacts. The proposed method is tested on publicly available databases and images collected from Hospital. The proposed method has achieved the best performance metric than the state-of-the-art. The computational time per image is 6.2 sec which is less than other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Abdelazeem S (2002) Micro-aneurysm detection using vessels removal and circular hough transform. In: Proceedings of the Nineteenth National Radio Science Conference, pp. 421–426. IEEE

  2. Adal K, Ali S, Sidibé D, Karnowski T, Chaum E, Mériaudeau F (2013) Automated detection of microaneurysms using robust blob descriptors. In: Medical Imaging 2013: Computer-Aided Diagnosis, vol. 8670, p. 86700N. International Society for Optics and Photonics

  3. Akram MU, Tariq A, Khan SA, Bazar SA (2013) Microaneurysm detection for early diagnosis of diabetic retinopathy. In: 2013 International Conference on Electronics, Computer and Computation (ICECCO), pp. 21–24. IEEE

  4. Antal B, Hajdu A (2012) An ensemble-based system for microaneurysm detection and diabetic retinopathy grading. IEEE Trans Biomed Eng 59(6):1720–1726

    Article  Google Scholar 

  5. Buades A, Coll B, Morel JM (2005) A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 60–65. IEEE

  6. Dai B, Wu X, Bu W (2016) Retinal microaneurysms detection using gradient vector analysis and class imbalance classification. PLOS One 11(8):e0161556

    Article  Google Scholar 

  7. Dashtbozorg B, Zhang J, Huang F, ter Haar Romeny BM (2018) Retinal microaneurysms detection using local convergence index features. IEEE Trans Image Process 27(7):3300–3315

    Article  MathSciNet  MATH  Google Scholar 

  8. Decenciere E, Cazuguel G, Zhang X, Thibault G, Klein JC, Meyer F, Marcotegui B, Quellec G, Lamard M, Danno R et al (2013) Teleophta: Machine learning and image processing methods for teleophthalmology. IRBM 34(2):196–203

    Article  Google Scholar 

  9. Decencière E, Zhang X, Cazuguel G, Lay B, Cochener B, Trone C, Gain P, Ordonez R, Massin P, Erginay A et al (2014) Feedback on a publicly distributed image database: the messidor database. Image Analy Stereol 33(3):231–234

    Article  MATH  Google Scholar 

  10. Ganaie M, Tanveer M, Initiative ADN et al (2022) Knn weighted reduced universum twin svm for class imbalance learning. Knowledge-Based Syst 245:108578

    Article  Google Scholar 

  11. Ganaie M, Tanveer M, Lin CT (2022) Large scale fuzzy least squares twin svms for class imbalance learning. IEEE Transactions on Fuzzy Systems

  12. Goel T, Murugan R, Mirjalili S, Chakrabartty DK (2020) Optconet: an optimized convolutional neural network for an automatic diagnosis of covid-19. Applied Intelligence pp. 1–16

  13. Habib M, Welikala R, Hoppe A, Owen C, Rudnicka A, Barman S (2017) Detection of microaneurysms in retinal images using an ensemble classifier. Inform Med Unlock 9:44–57

    Article  Google Scholar 

  14. Haloi M (2015) Improved microaneurysm detection using deep neural networks. arXiv preprint arXiv:1505.04424

  15. Jagan Mohan N, Murugan R, Goel T, Mirjalili S, Roy P (2021) A novel four-step feature selection technique for diabetic retinopathy grading. Phys Eng Sci Med 44(4):1351–1366

    Article  Google Scholar 

  16. Jayadeva Khemchandani R, Chandra S (2007) Twin support vector machines for pattern classification. IEEE Trans Pattern Anal Mach Intellig 29(5):905–910

    Article  MATH  Google Scholar 

  17. Joshi S, Karule P (2020) Mathematical morphology for microaneurysm detection in fundus images. Eur J Ophthalmol 30(5):1135–1142

    Article  Google Scholar 

  18. Khojasteh P, Aliahmad B, Kumar DK (2018) Fundus images analysis using deep features for detection of exudates, hemorrhages and microaneurysms. BMC Ophthalmol 18(1):1–13

    Article  Google Scholar 

  19. Kumar M, Nath MK (2016) Detection of microaneurysms and exudates from color fundus images by using sbgfrls algorithm. In: Proceedings of the International Conference on Informatics and Analytics, pp. 1–6

  20. Kumar MA, Gopal M (2009) Least squares twin support vector machines for pattern classification. Expert Syst Appl 36(4):7535–7543

    Article  Google Scholar 

  21. Lazar I, Hajdu A (2012) Retinal microaneurysm detection through local rotating cross-section profile analysis. IEEE Trans Med Imag 32(2):400–407

    Article  Google Scholar 

  22. Long S, Chen J, Hu A, Liu H, Chen Z, Zheng D (2020) Microaneurysms detection in color fundus images using machine learning based on directional local contrast. BioMed Eng OnLine 19:1–23

    Article  Google Scholar 

  23. Manjaramkar A, Kokare M (2018) Statistical geometrical features for microaneurysm detection. J Digit Imag 31(2):224–234

    Article  Google Scholar 

  24. Mazlan N, Yazid H, Arof H, Isa HM (2020) Automated microaneurysms detection and classification using multilevel thresholding and multilayer perceptron. J Med Biol Eng pp. 1–15

  25. Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21(12):4695–4708

    Article  MathSciNet  MATH  Google Scholar 

  26. Mohan NJ, Murugan R, Goel T Deep learning for diabetic retinopathy detection: Challenges and opportunities. Next Generation Healthcare Informatics p. 213

  27. Mohan NJ, Murugan R, Goel T (2022) Machine learning algorithms for hypertensive retinopathy detection through retinal fundus images. In: Computer Vision and Recognition Systems, pp. 39–67. Apple Academic Press

  28. Mohan NJ, Murugan R, Goel T, Roy P (2020) An improved accuracy rate in microaneurysms detection in retinal fundus images using non-local mean filter. In: International Conference on Machine Learning, Image Processing, Network Security and Data Sciences, pp. 183–193. Springer

  29. Mohan NJ, Murugan R, Goel T, Roy P (2020) Optic disc segmentation in fundus images using operator splitting approach. In: 2020 advanced communication technologies and signal processing (ACTS), pp. 1–5. IEEE

  30. Mohan NJ, Murugan R, Goel T, Roy P (2021) Exudate localization in retinal fundus images using modified speeded up robust features algorithm. In: 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), pp. 367–371. IEEE

  31. Nasiri JA, Charkari NM, Mozafari K (2014) Energy-based model of least squares twin support vector machines for human action recognition. Signal Process 104:248–257

    Article  Google Scholar 

  32. Navarro PJ, Alonso D, Stathis K (2016) Automatic detection of microaneurysms in diabetic retinopathy fundus images using the l* a* b color space. JOSA A 33(1):74–83

    Article  Google Scholar 

  33. Niemeijer M, Van Ginneken B, Cree MJ, Mizutani A, Quellec G, Sánchez CI, Zhang B, Hornero R, Lamard M, Muramatsu C et al (2009) Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs. IEEE Trans Med Imag 29(1):185–195

    Article  Google Scholar 

  34. Richhariya B, Tanveer M (2020) A reduced universum twin support vector machine for class imbalance learning. Pattern Recogn 102:107150

    Article  Google Scholar 

  35. Sehirli E, Turan MK, Dietzel A (2015) Automatic detection of microaneurysms in rgb retinal fundus images. Studies 1(8):1–7

    Google Scholar 

  36. Shah SAA, Laude A, Faye I, Tang TB (2016) Automated microaneurysm detection in diabetic retinopathy using curvelet transform. J Biomed Optics 21(10):101404

    Article  Google Scholar 

  37. Spencer T, Phillips RP, Sharp PF, Forrester JV (1992) Automated detection and quantification of microaneurysms in fluorescein angiograms. Graefe’s Arch Clin Experim Ophthalmol 230(1):36–41

    Article  Google Scholar 

  38. Tanveer M, Gautam C, Suganthan PN (2019) Comprehensive evaluation of twin svm based classifiers on uci datasets. Appl Soft Comput 83:105617

    Article  Google Scholar 

  39. Tanveer M, Khan MA, Ho SS (2016) Robust energy-based least squares twin support vector machines. Appl Intellig 45(1):174–186

    Article  Google Scholar 

  40. Tanveer M, Rajani T, Rastogi R, Shao YH, Ganaie M (2022) Comprehensive review on twin support vector machines. Ann Oper Res pp. 1–46

  41. Tanveer M, Sharma A, Suganthan PN (2019) General twin support vector machine with pinball loss function. Inform Sci 494:311–327

    Article  MathSciNet  MATH  Google Scholar 

  42. Tanveer M, Tiwari A, Choudhary R, Ganaie M (2021) Large-scale pinball twin support vector machines. Mach Learn pp. 1–24

  43. Tanveer M, Tiwari A, Choudhary R, Jalan S (2019) Sparse pinball twin support vector machines. Appl Soft Comput 78:164–175

    Article  Google Scholar 

  44. Wankhede P, Khanchandani K (2020) Automated microaneurysms detection from retinal fundus images using pixel intensity rank transform. Biomed Pharmacol J 13(1):47–54

    Article  Google Scholar 

  45. Wernick MN, Yang Y, Brankov JG, Yourganov G, Strother SC (2010) Machine learning in medical imaging. IEEE Signal Process Magazine 27(4):25–38

    Article  Google Scholar 

  46. Zhang B, Wu X, You J, Li Q, Karray F (2010) Detection of microaneurysms using multi-scale correlation coefficients. Pattern Recogn 43(6):2237–2248

    Article  Google Scholar 

  47. Zhou Wu C, Chen D, Wang Z, Yi Y, Du W (2017) Automatic microaneurysms detection based on multifeature fusion dictionary learning. Comput Mathe Methods Med

  48. Zhou W, Wu C, Chen D, Wang Z, Yi Y, Du W (2017) Automatic microaneurysm detection of diabetic retinopathy in fundus images. In: 2017 29th Chinese Control And Decision Conference (CCDC), pp. 7453–7458. IEEE

Download references

Acknowledgements

This work is supported by Science and Engineering Research Board (SERB), Department of Science and Technology, Government of INDIA under the sanctioned project file number SRG/2020/000617. The authors acknowledge NVIDIA Corporation, USA for providing GPU under Academic Research Grant scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Murugan.

Ethics declarations

Conflict of interest

None of the author has declared conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, N.J., Murugan, R., Goel, T. et al. An efficient microaneurysms detection approach in retinal fundus images. Int. J. Mach. Learn. & Cyber. 14, 1235–1252 (2023). https://doi.org/10.1007/s13042-022-01696-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-022-01696-3

Keywords

Navigation