[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Uncertain random portfolio optimization via semi-variance

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Semi-variance is a similar measure to variance, but it only considers values that are below the expected value. As important roles of semi-variance in finance, this paper proposes the concept of semi-variance for uncertain random variables. Also, a computational approach for semi-variance is provided via inverse uncertainty distribution. As an application in finance, portfolio selection problems of uncertain random returns are solved by minimizing semi-variance in mean-semi variance models. For better illustration, mean-semi variance model is compared with mean-variance one. Finally, for better understanding, some tables, figures and outputs are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ahmadzade H, Gao R (2020) Covariance of uncertain random variables and its application to portfolio optimization. J Ambient Intell Humaniz Comput 11:2613–2624

    Article  Google Scholar 

  2. Ahmadzade H, Gao R, Naderi H, Farahikia M (2020) Partial divergence measure of uncertain random variables and its application. Soft Comput 24:501–512

    Article  MATH  Google Scholar 

  3. Ahmadzade H, Gao R, Dehghan MH, Sheng Y (2017) Partial entropy of uncertain random variables. J Intell Fuzzy Syst 33:105–112

    Article  MATH  Google Scholar 

  4. Ahmadzade H, Sheng YH, Hassantabar Darzi F (2017) Some results of moments of uncertain random variables. Iran J Fuzzy Syst 14(2):1–21

    MathSciNet  MATH  Google Scholar 

  5. Ayub U, Shah S, Abbas Q (2015) Robust analysis for downside risk in portfolio management for a volatile stock market. Econ Model 44:86–96

    Article  Google Scholar 

  6. Chen L, Peng J, Zhang B, Rosyida I (2017) Diversified models for portfolio selection based on uncertain semivariance. Int J Syst Sci 48(3):1–12

    MathSciNet  MATH  Google Scholar 

  7. Chen X, Kar S, Ralescu DA (2012) Cross-entropy measure of uncertain variables. Inf Sci 201:53–60

    Article  MathSciNet  MATH  Google Scholar 

  8. Gao JW, Yao K (2015) Some concepts and theorems of uncertain random process. Int J Intell Syst 30(1):52–65

    Article  Google Scholar 

  9. Guo Q, Li J, Zou C, Guo Y, Yan W (2012) A class of multiperiod semi-variance portfolio for petroleum exploration and development. Int J Syst Sci 43(10):1883–1890

    Article  MATH  Google Scholar 

  10. Hou YC (2014) Subadditivity of chance measure. J Uncertainty Anal Appl 2:Article 14

    Article  Google Scholar 

  11. Ke H, Su TY, Ni YD (2015) Uncertain random multilevel programming with application to product control problem. Soft Comput 19(6):1739–1746

    Article  MATH  Google Scholar 

  12. Liu B (2007) Uncertainty theory, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  13. Liu B (2009) Some research problems in uncertainty theory. J Uncertain Syst 3(1):3–10

    Google Scholar 

  14. Liu B (2009) Theory and practice of uncertain programming, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  15. Liu B (2010) Uncertainty theory: a branch of mathematics for modeling human uncertainty. Springer, Berlin

    Book  Google Scholar 

  16. Liu B (2012) Why is there a need for uncertainty theory? J Uncertain Syst 6(1):3–10

    Google Scholar 

  17. Liu B (2013) Toward uncertain finance theory. J Uncertain Anal Appl 1:Article 1

    Article  Google Scholar 

  18. Liu YH, Ha MH (2010) Expected value of function of uncertain variables. J Uncertain Syst 4(3):181–186

    Google Scholar 

  19. Liu YH (2013) Uncertain random variables: a mixture of uncertainty and randomness. Soft Comput 17(4):625–634

    Article  MATH  Google Scholar 

  20. Liu YH (2013) Uncertain random programming with applications. Fuzzy Optim Decis Making 12(2):153–169

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu YH, Ralescu DA (2014) Risk index in uncertain random risk analysis. Int J Uncertain Fuzziness Knowl Based Syst 22(4):491–504

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu YH, Ralescu DA (2017) Value-at-risk in uncertain random risk analysis. Inf Sci 391:1–8

    MathSciNet  MATH  Google Scholar 

  23. Markowitz H (1959) Portfolio selection: efficient diversification of investments. Wiley, New York

    Google Scholar 

  24. Mansinia R, Ogryczakb W, Speranzac M (2014) Twenty years of linear programming based portfolio optimization. Eur J Oper Res 234(2):518–535

    Article  MathSciNet  Google Scholar 

  25. Sheng YH, Samarjit K (2015) Some results of moments of uncertain variable through inverse uncertainty distribution. Fuzzy Optim Decis Making 14(1):57–76

    Article  MathSciNet  MATH  Google Scholar 

  26. Sheng Y, Shi G, Ralescu DA (2015) Entropy of uncertain random variables with application to minimum spanning tree problem. Int J Uncertain Fuzziness Knowl-Based Syst 25:1–17

    MathSciNet  Google Scholar 

  27. Yan W, Li S (2009) Futures price modeling under exchange rate volatility and its multi-period semi-variance portfolio selection. Int J Syst Sci 40(11):1139–1148

    Article  MathSciNet  MATH  Google Scholar 

  28. Yao K (2015) A formula to calculate the variance of uncertain variable. Soft Comput 19(10):2947–2953

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, GC; formal analysis, HA; methodology, HA; resources, MY; software, MF; writing original draft, HA; funding acquisition, GC. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Hamed Ahmadzade.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, G., Ahmadzade, H., Farahikia, M. et al. Uncertain random portfolio optimization via semi-variance. Int. J. Mach. Learn. & Cyber. 13, 2533–2543 (2022). https://doi.org/10.1007/s13042-022-01542-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-022-01542-6

Keywords

Mathematics Subject Classification