[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Group decision making for internet public opinion emergency based upon linguistic intuitionistic fuzzy information

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

With the wide use of network, the outbreak of network public opinion emergencies has changed from single to multiple. The goal of the current study is to construct the emergency group decision-making (EGDM) model for multiple network public opinion emergencies under the linguistic intuitionistic environment. First of all, we introduce a new version of Copula and Co-copula named extended Copula (EAC) and extended Co-Copula (EACC), respectively, which can be used to capture the relation of attributes (indexes) in the group decision making problems of network public opinion emergencies; Some special cases of EAC and EACC are gained to manage intuitionistic fuzzy information (IFI). Besides, the novel operational rules of linguisitic intuitionistic fuzzy numbers (LIFNs) based upon EAC and EACC are also defined under linguistic intuitionistic environment. What’s more, by integrating the Choquet integral and the proposed operational rules of LIFNs, the linguistic intuitionistic fuzzy Choquet-Copula aggregation operators (LIFCCA) are proposed together with their properties are also investigated; whilst, five specific forms of LIFCCA are obtained when EAC and EACC take different generators. Last but not least, an EGDM approach is constructed based upon proposed LIFCCA; Consequently, the validities and merits of the proposed EGDM approach are shown by comparing with existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Liu DH, Wang WG, Li HY (2013) Evolutionary mechanism and information supervision of public opinions in internet emergency. Proc Comput Sci 17:973–980

    Article  Google Scholar 

  2. Zhang ZL, Zhang ZQ (2009) An interplay model for rumour spreading and emergency development. Phys A 388(19):4159–4166

    Article  Google Scholar 

  3. Xu JP, Zhang MX, Ni JN (2016) (2016) A coupled model for government communication and rumor spreading in emergencies. Adv Diff Equ 1:208

    Article  MATH  Google Scholar 

  4. Zhao LJ, Wang Q, Cheng JJ et al (2012) The impact of authorities’ media and rumor dissemination on the evolution of emergency. Physica A 391(15):3978–3987

    Article  Google Scholar 

  5. Shan SQ, Lin X (2018) Research on emergency dissemination models for social media based on information entropy. Enterprise Inform Syst 12(7):888–909

    Article  Google Scholar 

  6. Chen ZS, Yang Y, Wang XJ, Chin KS, Tsui KL (2019) Fostering linguistic decision-making under uncertainty: a proportional interval type-2 hesitant fuzzy TOPSIS approach based on Hamacher aggregation operators and andness optimization models. Inform Sci 500:229–258

    Article  Google Scholar 

  7. Chen ZS, Yu C, Chin KS, Martínez L (2019) An enhanced ordered weighted averaging operators generation algorithm with applications for multicriteria decision making. Appl Math Model 71:467–490

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen ZS, Chin KS, Li YL, Yang Y (2016) Proportional hesitant fuzzy linguistic term set for multiple criteria group decision making. Inform Sci 357:61–87

    Article  MathSciNet  MATH  Google Scholar 

  9. Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96

    Article  MATH  Google Scholar 

  10. Herrera F, Martínez L (2000) A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans Fuzzy Syst 8:746–752

    Article  Google Scholar 

  11. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning: Part-1. Inform Sci 8:199–251

    Article  MATH  Google Scholar 

  12. Xu Z (2004) A method based on linguistic aggregation operators for group decision making under linguistic preference relations. Inform Sci. 166(1–4):19–30

    Article  MathSciNet  MATH  Google Scholar 

  13. Gou X et al (2017) Hesitant fuzzy linguistic entropy and cross-entropy measures and alternative queuing method for multiple criteria decision making. Inform Sci 388–389:225–246

    Article  Google Scholar 

  14. Liao HC, Xu ZS, Zeng XJ, Merigó JM (2015) Qualitative decision making with correlation coefficients of hesitant fuzzy linguistic term sets. Knowl-Based Syst 76:127–138

    Article  Google Scholar 

  15. Liu P et al (2018) Distance measures for hesitant fuzzy linguistic sets and their applications in multiple criteria decision making. Int J Fuzzy Syst 20(7):2111–2121

    Article  Google Scholar 

  16. Rodríguez RM, Martínez L, Herrera F (2012) Hesitant fuzzy linguistic terms sets for decision making. IEEE Trans Fuzzy Syst 20(1):109–119

    Article  Google Scholar 

  17. Zhang Z, Guo C, Martínez L (2017) Managing multigranular linguistic distribution assessments in large-scale multiattribute group decision making. IEEE Trans Syst Man Cybernet 47(11):3063–3076

    Article  Google Scholar 

  18. Li YY, Zhang HY, Wang JQ (2017) Linguistic neutrosophic sets and their application in multicriteria decision-making problems. Int J Uncertain. Quant 7(2):135–154

    Article  Google Scholar 

  19. Liu P, Shi LL (2017) Some neutrosophic uncertain linguistic number Heronian mean operators and their application to multi-attribute group decision making. Neural Comput Appl 28(5):1079–1093

    Article  Google Scholar 

  20. Chen Z et al (2015) An approach to multiple attribute group decision making based on linguistic intuitionistic fuzzy numbers. Int Jo Comput Intell Syst 8(4):747–760

    Article  Google Scholar 

  21. Garg H (2018) Linguistic Pythagorean fuzzy sets and its applications in multiattribute decision-making process. Int J Intell Syst 33(6):1234–1263

    Article  Google Scholar 

  22. Li P, Wei CP (2019) An emergency decision-making method based on D-S evidence theory for probabilistic linguistic term sets. International Journal of Disaster Risk Reduction 37: https://doi.org/10.1016/j.ijdrr.2019.101178

  23. Li MY, Cao PP (2019) Extended TODIM method for multi-attribute risk decision making problems in emergency response. Comput Indu Eng 135:1286–1293

    Article  Google Scholar 

  24. Gao J, Xu ZS, Ren PJ, Liao HC (2019) An emergency decision making method based on the multiplicative consistency of probabilistic linguistic preference relations. Int J Mach Learn Cybernet 10(7):1613–1629

    Article  Google Scholar 

  25. Gao J, Xu ZS, Liang ZL, Liao HC (2019) (2019) Expected consistency-based emergency decision making with incomplete probabilistic linguistic preference relations. Knowl-Based Syst 176:15–28

    Article  Google Scholar 

  26. Wang L, Wang YM, Martínez Luis (2017) A group decision method based on prospect theory for emergency situations. Inform Sci 418–419:119–135

    Article  Google Scholar 

  27. Ding X F, Zhang L, Liu H C (2020) Emergency decision making with extended axiomatic design approach under picture fuzzy environment, Expert Systems, 37(2):https://doi.org/10.1111/exsy.12482

  28. Ding XF, Liu HC (2019) An extended prospect theory-VIKOR approach for emergency decision making with 2-dimension uncertain linguistic information. Soft Comput 23(22):12139–12150

    Article  MATH  Google Scholar 

  29. Ding XF, Liu HC (2019) A new approach for emergency decision-making based on zero-sum game with Pythagorean fuzzy uncertain linguistic variables. Int J Intell Syst 34(7):1667–1684

    Article  Google Scholar 

  30. Ding XF, Liu HC, Shi H (2019) A dynamic approach for emergency decision making based on prospect theory with interval-valued Pythagorean fuzzy linguistic variables. Comput Ind Eng 131:57–65

    Article  Google Scholar 

  31. Xu XH, Yang X, Chen XH, Liu BS (2019) Large group two-stage risk emergency decision-making method based on big data analysis of social media. J Intell Fuzzy Syst 36(3):2645–2659

    Article  Google Scholar 

  32. Peng XD, Garg H (2018) Algorithms for interval-valued fuzzy soft sets in emergency decision making based on WDBA and CODAS with new information measure. Comput Ind Eng 119:439–452

    Article  Google Scholar 

  33. Liang YY, Tu Y, Ju YB, Shen WJ (2019) A multi-granularity proportional hesitant fuzzy linguistic TODIM method and its application to emergency decision making. International Journal of Disaster Risk Reduction 36: https://doi.org/10.1016/j.ijdrr.2019.101081

  34. Peng HG et al (2017) A linguistic intuitionistic multi-criteria decision-making method based on the Frank Heronian mean operator and its application in evaluating coal mine safety. Int J Mach Learn Cybernet 9(6):1053–1068

    Article  Google Scholar 

  35. Yuan R et al (2018) Linguistic intuitionistic fuzzy group decision making based on aggregation operators. Int J Fuzzy Syst 21(2):407–420

    Article  Google Scholar 

  36. Garg H, Kumar K (2019) Multiattribute decision making based on power operators for linguistic intuitionistic fuzzy set using set pair analysis. Expert Systems 18: https://doi.org/10.1111/exsy.12428

  37. Teng F, Liu P (2018) Multiple-attribute group decision-making method based on the linguistic intuitionistic fuzzy density hybrid weighted averaging operator. Int J Fuzzy Syst 21(1):213–231

    Article  MathSciNet  Google Scholar 

  38. Liu Y et al (2019) Dynamic intuitionistic fuzzy multiattribute decision making based on evidential reasoning and MDIFWG operator. J Intell Fuzzy Syst 36(6):5973–5987

    Article  Google Scholar 

  39. Yager RR (2016) Multicriteria decision making with ordinal/linguistic intuitionistic fuzzy sets for mobile apps. IEEE Trans Fuzzy Syst 24(3):590–599

    Article  Google Scholar 

  40. Zhang HY et al (2017) An extended outranking approach for multi-criteria decision-making problems with linguistic intuitionistic fuzzy numbers. Appl Soft Comput 59:462–474

    Article  Google Scholar 

  41. Nelsen R B (2013) An introduction to copula. Springer Science Business Media

  42. Tao Z et al (2018) On intuitionistic fuzzy copula aggregation operators in multiple- attribute decision making. Cognit Comput 10(4):610–624

    Article  Google Scholar 

  43. Tao Z et al (2018) The novel computational model of unbalanced linguistic variables based on Archimedean Copula. Int J Uncertainty Fuzziness Knowl Based Syst 26(04):601–631

    Article  MATH  Google Scholar 

  44. Chen T, He SS et al (2019) Novel operations for linguistic neutrosophic sets on the basis of Archimedean copulas and co-copulas and their application in multi-criteria decision-making problems. J Intell Fuzzy Syst 37:2887–2912

    Article  Google Scholar 

  45. Sugeno M (1974) Theory of fuzzy integral and its application. Doctorial dissertation. Tokyo Institute of Technology, Tokyo, Japan

  46. Aggarwal M (2018) Attitudinal Choquet integrals and applications in decision making. Int J Intell Syst 33(4):879–898

    Article  Google Scholar 

  47. Dong JY et al (2016) Generalized choquet integral operator of triangular Atanassov s intuitionistic fuzzy numbers and application to multi-attribute group decision making. Int J Uncert Fuzziness Knowl-Based Syst 24(05):647–683

    Article  MathSciNet  MATH  Google Scholar 

  48. Fernande J et al (2019) A generalization of the Choquet integral defined in terms of the Mobius transform. IEEE Transactions on Fuzzy Systems 1–7

  49. Pasi G et al (2019) A Multi-Criteria Decision Making approach based on the Choquet integral for assessing the credibility of User-Generated Content. Inform Sci 503:574–588

    Article  Google Scholar 

  50. Tan C, Chen X (2010) Intuitionistic fuzzy Choquet integral operator for multi-criteria decision making.Expert Systems with Applications 37(1): 149-157

  51. Wu J et al (2013) Intuitionistic fuzzy-valued Choquet integral and its application in multicriteria decision making. Inform Sci 222:509–527

    Article  MathSciNet  MATH  Google Scholar 

  52. Xu Z (2010) Choquet integrals of weighted intuitionistic fuzzy information. Inform Sci 180(5):726–736

    Article  MathSciNet  MATH  Google Scholar 

  53. Liu P, Chen S (2018) Multiattribute group decision making based on intuitionistic 2-tuple linguistic information. Inform Sci 430–431:599–619

    Article  MathSciNet  MATH  Google Scholar 

  54. Liu P, Wang P (2017) Some improved linguistic intuitionistic fuzzy aggregation operators and their applications to multiple-attribute decision making. Int J Inform Technol Decision Making 16(03):817–850

    Article  Google Scholar 

  55. Choquet G (1954) Theory of capacities. Ann Inst Fourier 5:131–295

    Article  MathSciNet  MATH  Google Scholar 

  56. Genest C, Mackay RJ (1986) Copulas Archimediennes et familles de lois bidimensionnelles dont les marges sont donnäees. Can J Stat 14:145–159

    Article  MATH  Google Scholar 

  57. Wu Y, Zhang Z, Kou G, Zhang H, Chao X, Li CC et al (2020) Distributed linguistic representations in decision making: taxonomy, key elements and applications, and challenges in data science and explainable artificial intelligence. Information Fusion. https://doi.org/10.1016/j.inffus.2020.08.018

  58. Zhang Z, Yu W, Martínez L, Gao Y (2019) Managing multigranular unbalanced hesitant fuzzy linguistic information in multiattribute large-scale group decision making: a linguistic distribution-based approach. IEEE Transactions on Fuzzy Systems. https://doi.org/10.1109/TFUZZ.2019.2949758

  59. Rodríguez R M, Labella A, De Tre G, Martínez L (2018) A large scale consensus reaching process managing group hesitation. Knowledge Based Systems, 159(NOV.1), 86-97

  60. Labella á, Liu Y, Rodríguez RM, Martínez L (2017) Analyzing the performance of classical consensus models in large scale group decision making: a comparative study. Applied Soft Computing, S1568494617303101

  61. Yu WY, Zhang Z, Zhong QY (2020) Consensus reaching for MAGDM with multi-granular hesitant fuzzy linguistic term sets: a minimum adjustment-based approach. Annals of operations research. https://doi.org/10.1007/s10479-019-03432-7

  62. Zhang Z, Gao Y, Li Z (2020) Consensus reaching for social network group decision making by considering leadership and bounded confidence. Knowl-Based Syst 204:106240

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Sichuan Province Youth Science and Technology Innovation Team under Grant 2019JDTD0015, Application Basic Research Plan Project of Sichuan Province under Grant 2017JY0199, Scientific Research Project of Department of Education of Sichuan Province under Grant 18ZA0273 and Grant 15TD0027, Scientific Research Project of Neijiang Normal University under Grant 18TD08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

A: The Proof of Proposition 1

Proof

  1. (1)

    From Theorem 1, we have

    $$\begin{aligned} \gamma a_i=\left( s_{g-\left( \varrho ^{-1}\left( \gamma \varrho \left( g-\alpha \right) \right) \right) }, s_{\varrho ^{-1}\left( \gamma \varrho \left( \beta \right) \right) }\right) , \end{aligned}$$

    therefore,

    $$\begin{aligned}&LIFCCA\left( \gamma a_{1}, \gamma a_{2}, \cdots , \gamma a_{n}\right) \nonumber \\&=\left( \begin{array}{ccc}s_{g-\left( \varrho ^{-1}\left( \gamma \left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \right) \varrho (g-\alpha _{(k)})\right) \right) }, \\ s_{\varrho ^{-1}\left( \gamma \left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \right) \varrho \left( \beta _{(k)}\right) \right) }\end{array}\right) . \end{aligned}$$

    Furthermore,

    $$\begin{aligned}&\gamma LIFCCA\left( a_{1}, a_{2}, \cdots , a_{n}\right) \\&=\gamma \left( \begin{array}{ccc}s_{g-\left( \varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \varrho (g-\alpha _{(k)})\right) \right) }, \\ s_{\varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\varrho (\beta _{(k)})\right) \right) }\end{array}\right) \\&=\left( \begin{array}{ccc}s_{g-\left( \varrho ^{-1}\left( \gamma \left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \right) \varrho (g-\alpha _{(k)})\right) \right) }, \\ s_{\varrho ^{-1}\left( \gamma \left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \right) \varrho \left( \beta _{(k)}\right) \right) }\end{array}\right) \\&=LIFCCA\left( \gamma a_{(1)}, \gamma a_{\pi (2)}, \cdots , \gamma a_{(n)}\right) . \end{aligned}$$
  2. (2)

    As \(a_i \oplus _{{\mathbb {H}}}a=\left( s_{g-\left( \varrho ^{-1}\left( \varrho \left( g-\alpha _i\right) +\varrho \left( g-\alpha \right) \right) \right) }, s_{\varrho ^{-1}\left( \varrho \left( \beta _i\right) +\varrho \left( \beta \right) \right) }\right)\), then

    $$\begin{aligned} \begin{aligned}&LIFCCA\left( a_{1}\oplus _{{\mathbb {H}}}a, \cdots , a_{n}\oplus _{{\mathbb {H}}} a\right) \\&=\left( \begin{array}{ccc}s_{g-\left( \varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \left( \varrho (g-\alpha _{(k)})\right) +\varrho (g-\alpha )\right) \right) }, \\ s_{\varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \left( \varrho \left( \beta _{(k)}\right) +\varrho \left( \beta \right) \right) \right) }\end{array}\right) . \end{aligned} \end{aligned}$$

    As \(\sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) =1\), so

    $$\begin{aligned} \begin{aligned}&LIFCCA\left( a_{1}\oplus _{{\mathbb {H}}}a, \cdots , a_{n}\oplus _{{\mathbb {H}}} a\right) \\&=\left( \begin{array}{ccc}s_{g-\left( \varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \left( \varrho (g-\alpha _{(k)})\right) \right) +\varrho (g-\alpha )\right) }, \\ s_{\varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \left( \varrho \left( \beta _{(k)}\right) \right) +\varrho \left( \beta \right) \right) }\end{array}\right) . \end{aligned} \end{aligned}$$

    And

    $$\begin{aligned} \begin{aligned}&LIFCCA\left( a_{1}, \cdots , a_{n}\right) \oplus _{{\mathbb {H}}} a \\&=\left( \begin{array}{ccc}s_{g-\left( \varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \left( \varrho (g-\alpha _{(k)})\right) \right) +\varrho (g-\alpha )\right) }, \\ s_{\varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \left( \varrho \left( \beta _{(k)}\right) \right) +\varrho \left( \beta \right) \right) }\end{array}\right) . \end{aligned} \end{aligned}$$

    Therefore,

    $$\begin{aligned}&LIFCCA\left( a_{1}\oplus _{{\mathbb {H}}}a, \cdots , a_{n}\oplus _{{\mathbb {H}}} a\right) \\&\quad =LIFCCA\left( a_{1}, \cdots , a_{n}\right) \oplus _{{\mathbb {H}}} a. \end{aligned}$$
  3. (3)

    It is easy to verify (3) hold from (1) and (2).

  4. (4)

    If \(a_i=a=\left( s_{\alpha }, s_{\beta }\right)\) for \(i=1, \cdots , n\), then

    $$\begin{aligned}&LIFCCA\left( a_{1}, \cdots , a_{n}\right) \\&\quad =\left( \begin{array}{ccc}s_{g-\left( \varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \varrho (g-\alpha _{(k)})\right) \right) },\\ s_{\varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\varrho (\beta _{(k)})\right) \right) }\end{array}\right) .\\&\quad =\left( \begin{array}{ccc}s_{g-\left( \varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \varrho (g-\alpha )\right) \right) },\\ s_{\varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\varrho (\beta )\right) \right) }\end{array}\right) .\\&\quad =\left( s_{g-\left( \varrho ^{-1}\left( \varrho (g-\alpha )\right) \right) }, s_{\varrho ^{-1}\left( \varrho (\beta )\right) }\right) .\\&\quad =\left( s_{\alpha }, s_{\beta }\right) \\&\quad = a. \end{aligned}$$
  5. (5)

    On the one hand, since \(s_{\alpha _{(k)}}\le s_{\alpha _{(k)}^{'}}, s_{\beta _{(k)}}\ge s_{\beta _{(k)}^{'}}\) for all i, we have \(\alpha _{(k)}\le \alpha _{(k)}^{'}\), and so \(g-\alpha _{(k)}\ge g-\alpha _{(k)}^{'}\). As \(\varrho\) and \(\varrho ^{-1}\) are monotonicity decreasing, we have \(\varrho \left( g-\alpha _{(k)}\right) \le \varrho \left( g-\alpha _{(k)}^{'}\right)\), furthermore,

    $$\begin{aligned}&\sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\varrho \left( g-\alpha _{(k)}\right) \right) \\&\quad \le \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\varrho \left( g-\alpha _{(k)}^{'}\right) \right) . \end{aligned}$$

    And so

    $$\begin{aligned}&\varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\varrho \left( g-\alpha _{(k)}\right) \right) \right) \\&\ge \varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\varrho \left( g-\alpha _{(k)}^{'}\right) \right) \right) . \\&g-\left( \varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\varrho \left( g-\alpha _{(k)}\right) \right) \right) \right) \\&\le g-\left( \varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\varrho \left( g-\alpha _{(k)}^{'}\right) \right) \right) \right) . \end{aligned}$$

    On the other hand, as \(\beta _{(k)}\ge \beta _{(k)}^{'}\), so \(\varrho (\beta _{(k)})\le \varrho (\beta _{(k)}^{'})\), we have,

    $$\begin{aligned}&\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \varrho (\beta _{(k)})\right) \\&\quad \le \left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \varrho (\beta _{(k)}^{'})\right) . \end{aligned}$$

    Then

    $$\begin{aligned}&\varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \varrho (\beta _{(k)})\right) \\&\quad \ge \varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \varrho (\beta _{(k)}^{'})\right) . \end{aligned}$$

    Therefore, \(LIFCCA\left( a_{1}, \cdots , a_{n}\right) \ge LIFCCA\left( b_1, \cdots , b_{n}\right)\).

  6. (6)

    It is easy to verify the validity of (6) from (4) and (5).

\(\square\)

B: The Proof of Theorem 2.

Proof

  1. (1)

    Let \({(k)}\in S_n\) s. t. \(a_{(1)}\le \cdots \le a_{(k-1)}\le a_{(k+1)}\le \cdots \le a_{(n)}\) and \(a_i=a_{(k)}\). As \(c_i\) is unnecessary, so \(\varphi \left( \gimel _{(k)}\right) =\varphi \left( \gimel _{(k)}\bigcup c_{(k+1)}\right) =\varphi \left( \gimel _{(k+1)}\right)\). Hence,

    $$\begin{aligned}&LIFCCA\left( a_{1}, \cdots , a_{n}\right) \\&\quad =\left( \oplus _{{\mathbb {H}}}\right) _{k=1}^{n}\left( \left( \varphi \left( \gimel _{(k)}\right) -\varphi \left( \gimel _{(k+1)}\right) \right) a_{(k)}\right) \\&\quad =\left( \varphi \left( \gimel _{(k)}\right) - \varphi \left( \gimel _{(k+1)}\right) \left( \gimel _{(k)}\right) \right) \\&\qquad \oplus _{{\mathbb {H}}}\left( \left( \oplus _{{\mathbb {H}}}\right) _{j=1, j\ne k}^{n}\left( \left( \varphi \left( \gimel _{(j)}\right) -\varphi \left( \gimel _{(j+1)}\right) \right) a_{(j)}\right) \right) \\&\quad =\left( \oplus _{{\mathbb {H}}}\right) _{j=1, j\ne n}^{n}\left( \left( \varphi \left( \gimel _{(j)}\right) -\varphi \left( \gimel _{(j+1)}\right) a_{(j)}\right) \right) \\&\quad =LIFCCA\left( a_1, \cdots , a_{i-1}, a_{i+1}, \cdots , a_{n}\right) . \end{aligned}$$
  2. (2)

    Let \({(k)}\in S_n\) s. t. \(a_{(1)}\le \cdots \le a_{(k-1)}\le a_{(k+1)}\le \cdots \le a_{(n)}\) and \(a_j=a_{(k)}\). As \(c_j\) is independent, so \(\varphi \left( \gimel _{(k)}\right) =\varphi \left( \gimel _{(k+1)}\right) +\varphi \left( c_{(k)}\right)\). Therefore,

    $$\begin{aligned}&LIFCCA\left( a_{1}, \cdots , a_{n}\right) \\&\quad =\left( \begin{array}{ccc}s_{g-\left( \varrho ^{-1}\left( \sum _{i=1}^{n}\left( \varphi (\gimel _{(i)})-\varphi (\gimel _{(i+1)})\right) \varrho (g-\alpha _{(i)})\right) \right) }, \\ s_{\varrho ^{-1}\left( \sum _{i=1}^{n}\left( \varphi (\gimel _{(i)})-\varphi (\gimel _{(i+1)})\varrho (\beta _{(i)})\right) \right) }\end{array}\right) \\&\quad =\left( \begin{array}{ccc}s_{g-\left( \varrho ^{-1}\left( \left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \varrho \left( g-\alpha _{(j)}\right) \right) \right) },\\ s_{\varrho ^{-1}\left( \left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\varrho (\beta _{(i)})\right) +\sum _{i=1,i\ne k}^{n}\left( \varphi (\gimel _{(i)})-\varphi (\gimel _{(i+1)})\varrho (\beta _{(i)})\right) \right) }\end{array}\right) \\&\quad =\left( \begin{array}{ccc}s_{g-\left( \varrho ^{-1}\left( \varphi (\gimel _{(k)})\varrho \left( g-\alpha _{(k)}\right) \right) +\sum _{i=1,i\ne k}^{n}\left( \varphi (\gimel _{(i)})-\varphi (\gimel _{(i+1)})\varrho \left( g-\alpha _{(j)}\right) \right) \right) },\\ s_{\varrho ^{-1}\left( \left( \varphi (\gimel _{(k)})\varrho (\beta _{(k)})\right) +\sum _{i=1,i\ne k}^{n}\left( \varphi (\gimel _{(i)})-\varphi (\gimel _{(i+1)})\varrho (\beta _{(i)})\right) \right) }\end{array}\right) \\&\quad =(a_k)^{\varphi (c_{(k)})}\otimes _{{\mathbb {H}}}LIFCCA\left( a_1, a_2, \cdots , a_{k-1}, a_{k+1}, \cdots , a_{n}\right) . \end{aligned}$$

\(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wei, G., Liu, H. et al. Group decision making for internet public opinion emergency based upon linguistic intuitionistic fuzzy information. Int. J. Mach. Learn. & Cyber. 13, 579–594 (2022). https://doi.org/10.1007/s13042-020-01262-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-020-01262-9

Keywords

Navigation