Abstract
With the wide use of network, the outbreak of network public opinion emergencies has changed from single to multiple. The goal of the current study is to construct the emergency group decision-making (EGDM) model for multiple network public opinion emergencies under the linguistic intuitionistic environment. First of all, we introduce a new version of Copula and Co-copula named extended Copula (EAC) and extended Co-Copula (EACC), respectively, which can be used to capture the relation of attributes (indexes) in the group decision making problems of network public opinion emergencies; Some special cases of EAC and EACC are gained to manage intuitionistic fuzzy information (IFI). Besides, the novel operational rules of linguisitic intuitionistic fuzzy numbers (LIFNs) based upon EAC and EACC are also defined under linguistic intuitionistic environment. What’s more, by integrating the Choquet integral and the proposed operational rules of LIFNs, the linguistic intuitionistic fuzzy Choquet-Copula aggregation operators (LIFCCA) are proposed together with their properties are also investigated; whilst, five specific forms of LIFCCA are obtained when EAC and EACC take different generators. Last but not least, an EGDM approach is constructed based upon proposed LIFCCA; Consequently, the validities and merits of the proposed EGDM approach are shown by comparing with existing approaches.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Liu DH, Wang WG, Li HY (2013) Evolutionary mechanism and information supervision of public opinions in internet emergency. Proc Comput Sci 17:973–980
Zhang ZL, Zhang ZQ (2009) An interplay model for rumour spreading and emergency development. Phys A 388(19):4159–4166
Xu JP, Zhang MX, Ni JN (2016) (2016) A coupled model for government communication and rumor spreading in emergencies. Adv Diff Equ 1:208
Zhao LJ, Wang Q, Cheng JJ et al (2012) The impact of authorities’ media and rumor dissemination on the evolution of emergency. Physica A 391(15):3978–3987
Shan SQ, Lin X (2018) Research on emergency dissemination models for social media based on information entropy. Enterprise Inform Syst 12(7):888–909
Chen ZS, Yang Y, Wang XJ, Chin KS, Tsui KL (2019) Fostering linguistic decision-making under uncertainty: a proportional interval type-2 hesitant fuzzy TOPSIS approach based on Hamacher aggregation operators and andness optimization models. Inform Sci 500:229–258
Chen ZS, Yu C, Chin KS, Martínez L (2019) An enhanced ordered weighted averaging operators generation algorithm with applications for multicriteria decision making. Appl Math Model 71:467–490
Chen ZS, Chin KS, Li YL, Yang Y (2016) Proportional hesitant fuzzy linguistic term set for multiple criteria group decision making. Inform Sci 357:61–87
Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96
Herrera F, Martínez L (2000) A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans Fuzzy Syst 8:746–752
Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning: Part-1. Inform Sci 8:199–251
Xu Z (2004) A method based on linguistic aggregation operators for group decision making under linguistic preference relations. Inform Sci. 166(1–4):19–30
Gou X et al (2017) Hesitant fuzzy linguistic entropy and cross-entropy measures and alternative queuing method for multiple criteria decision making. Inform Sci 388–389:225–246
Liao HC, Xu ZS, Zeng XJ, Merigó JM (2015) Qualitative decision making with correlation coefficients of hesitant fuzzy linguistic term sets. Knowl-Based Syst 76:127–138
Liu P et al (2018) Distance measures for hesitant fuzzy linguistic sets and their applications in multiple criteria decision making. Int J Fuzzy Syst 20(7):2111–2121
Rodríguez RM, Martínez L, Herrera F (2012) Hesitant fuzzy linguistic terms sets for decision making. IEEE Trans Fuzzy Syst 20(1):109–119
Zhang Z, Guo C, Martínez L (2017) Managing multigranular linguistic distribution assessments in large-scale multiattribute group decision making. IEEE Trans Syst Man Cybernet 47(11):3063–3076
Li YY, Zhang HY, Wang JQ (2017) Linguistic neutrosophic sets and their application in multicriteria decision-making problems. Int J Uncertain. Quant 7(2):135–154
Liu P, Shi LL (2017) Some neutrosophic uncertain linguistic number Heronian mean operators and their application to multi-attribute group decision making. Neural Comput Appl 28(5):1079–1093
Chen Z et al (2015) An approach to multiple attribute group decision making based on linguistic intuitionistic fuzzy numbers. Int Jo Comput Intell Syst 8(4):747–760
Garg H (2018) Linguistic Pythagorean fuzzy sets and its applications in multiattribute decision-making process. Int J Intell Syst 33(6):1234–1263
Li P, Wei CP (2019) An emergency decision-making method based on D-S evidence theory for probabilistic linguistic term sets. International Journal of Disaster Risk Reduction 37: https://doi.org/10.1016/j.ijdrr.2019.101178
Li MY, Cao PP (2019) Extended TODIM method for multi-attribute risk decision making problems in emergency response. Comput Indu Eng 135:1286–1293
Gao J, Xu ZS, Ren PJ, Liao HC (2019) An emergency decision making method based on the multiplicative consistency of probabilistic linguistic preference relations. Int J Mach Learn Cybernet 10(7):1613–1629
Gao J, Xu ZS, Liang ZL, Liao HC (2019) (2019) Expected consistency-based emergency decision making with incomplete probabilistic linguistic preference relations. Knowl-Based Syst 176:15–28
Wang L, Wang YM, Martínez Luis (2017) A group decision method based on prospect theory for emergency situations. Inform Sci 418–419:119–135
Ding X F, Zhang L, Liu H C (2020) Emergency decision making with extended axiomatic design approach under picture fuzzy environment, Expert Systems, 37(2):https://doi.org/10.1111/exsy.12482
Ding XF, Liu HC (2019) An extended prospect theory-VIKOR approach for emergency decision making with 2-dimension uncertain linguistic information. Soft Comput 23(22):12139–12150
Ding XF, Liu HC (2019) A new approach for emergency decision-making based on zero-sum game with Pythagorean fuzzy uncertain linguistic variables. Int J Intell Syst 34(7):1667–1684
Ding XF, Liu HC, Shi H (2019) A dynamic approach for emergency decision making based on prospect theory with interval-valued Pythagorean fuzzy linguistic variables. Comput Ind Eng 131:57–65
Xu XH, Yang X, Chen XH, Liu BS (2019) Large group two-stage risk emergency decision-making method based on big data analysis of social media. J Intell Fuzzy Syst 36(3):2645–2659
Peng XD, Garg H (2018) Algorithms for interval-valued fuzzy soft sets in emergency decision making based on WDBA and CODAS with new information measure. Comput Ind Eng 119:439–452
Liang YY, Tu Y, Ju YB, Shen WJ (2019) A multi-granularity proportional hesitant fuzzy linguistic TODIM method and its application to emergency decision making. International Journal of Disaster Risk Reduction 36: https://doi.org/10.1016/j.ijdrr.2019.101081
Peng HG et al (2017) A linguistic intuitionistic multi-criteria decision-making method based on the Frank Heronian mean operator and its application in evaluating coal mine safety. Int J Mach Learn Cybernet 9(6):1053–1068
Yuan R et al (2018) Linguistic intuitionistic fuzzy group decision making based on aggregation operators. Int J Fuzzy Syst 21(2):407–420
Garg H, Kumar K (2019) Multiattribute decision making based on power operators for linguistic intuitionistic fuzzy set using set pair analysis. Expert Systems 18: https://doi.org/10.1111/exsy.12428
Teng F, Liu P (2018) Multiple-attribute group decision-making method based on the linguistic intuitionistic fuzzy density hybrid weighted averaging operator. Int J Fuzzy Syst 21(1):213–231
Liu Y et al (2019) Dynamic intuitionistic fuzzy multiattribute decision making based on evidential reasoning and MDIFWG operator. J Intell Fuzzy Syst 36(6):5973–5987
Yager RR (2016) Multicriteria decision making with ordinal/linguistic intuitionistic fuzzy sets for mobile apps. IEEE Trans Fuzzy Syst 24(3):590–599
Zhang HY et al (2017) An extended outranking approach for multi-criteria decision-making problems with linguistic intuitionistic fuzzy numbers. Appl Soft Comput 59:462–474
Nelsen R B (2013) An introduction to copula. Springer Science Business Media
Tao Z et al (2018) On intuitionistic fuzzy copula aggregation operators in multiple- attribute decision making. Cognit Comput 10(4):610–624
Tao Z et al (2018) The novel computational model of unbalanced linguistic variables based on Archimedean Copula. Int J Uncertainty Fuzziness Knowl Based Syst 26(04):601–631
Chen T, He SS et al (2019) Novel operations for linguistic neutrosophic sets on the basis of Archimedean copulas and co-copulas and their application in multi-criteria decision-making problems. J Intell Fuzzy Syst 37:2887–2912
Sugeno M (1974) Theory of fuzzy integral and its application. Doctorial dissertation. Tokyo Institute of Technology, Tokyo, Japan
Aggarwal M (2018) Attitudinal Choquet integrals and applications in decision making. Int J Intell Syst 33(4):879–898
Dong JY et al (2016) Generalized choquet integral operator of triangular Atanassov s intuitionistic fuzzy numbers and application to multi-attribute group decision making. Int J Uncert Fuzziness Knowl-Based Syst 24(05):647–683
Fernande J et al (2019) A generalization of the Choquet integral defined in terms of the Mobius transform. IEEE Transactions on Fuzzy Systems 1–7
Pasi G et al (2019) A Multi-Criteria Decision Making approach based on the Choquet integral for assessing the credibility of User-Generated Content. Inform Sci 503:574–588
Tan C, Chen X (2010) Intuitionistic fuzzy Choquet integral operator for multi-criteria decision making.Expert Systems with Applications 37(1): 149-157
Wu J et al (2013) Intuitionistic fuzzy-valued Choquet integral and its application in multicriteria decision making. Inform Sci 222:509–527
Xu Z (2010) Choquet integrals of weighted intuitionistic fuzzy information. Inform Sci 180(5):726–736
Liu P, Chen S (2018) Multiattribute group decision making based on intuitionistic 2-tuple linguistic information. Inform Sci 430–431:599–619
Liu P, Wang P (2017) Some improved linguistic intuitionistic fuzzy aggregation operators and their applications to multiple-attribute decision making. Int J Inform Technol Decision Making 16(03):817–850
Choquet G (1954) Theory of capacities. Ann Inst Fourier 5:131–295
Genest C, Mackay RJ (1986) Copulas Archimediennes et familles de lois bidimensionnelles dont les marges sont donnäees. Can J Stat 14:145–159
Wu Y, Zhang Z, Kou G, Zhang H, Chao X, Li CC et al (2020) Distributed linguistic representations in decision making: taxonomy, key elements and applications, and challenges in data science and explainable artificial intelligence. Information Fusion. https://doi.org/10.1016/j.inffus.2020.08.018
Zhang Z, Yu W, Martínez L, Gao Y (2019) Managing multigranular unbalanced hesitant fuzzy linguistic information in multiattribute large-scale group decision making: a linguistic distribution-based approach. IEEE Transactions on Fuzzy Systems. https://doi.org/10.1109/TFUZZ.2019.2949758
Rodríguez R M, Labella A, De Tre G, Martínez L (2018) A large scale consensus reaching process managing group hesitation. Knowledge Based Systems, 159(NOV.1), 86-97
Labella á, Liu Y, Rodríguez RM, Martínez L (2017) Analyzing the performance of classical consensus models in large scale group decision making: a comparative study. Applied Soft Computing, S1568494617303101
Yu WY, Zhang Z, Zhong QY (2020) Consensus reaching for MAGDM with multi-granular hesitant fuzzy linguistic term sets: a minimum adjustment-based approach. Annals of operations research. https://doi.org/10.1007/s10479-019-03432-7
Zhang Z, Gao Y, Li Z (2020) Consensus reaching for social network group decision making by considering leadership and bounded confidence. Knowl-Based Syst 204:106240
Acknowledgements
This work was supported in part by Sichuan Province Youth Science and Technology Innovation Team under Grant 2019JDTD0015, Application Basic Research Plan Project of Sichuan Province under Grant 2017JY0199, Scientific Research Project of Department of Education of Sichuan Province under Grant 18ZA0273 and Grant 15TD0027, Scientific Research Project of Neijiang Normal University under Grant 18TD08.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
A: The Proof of Proposition 1
Proof
-
(1)
From Theorem 1, we have
$$\begin{aligned} \gamma a_i=\left( s_{g-\left( \varrho ^{-1}\left( \gamma \varrho \left( g-\alpha \right) \right) \right) }, s_{\varrho ^{-1}\left( \gamma \varrho \left( \beta \right) \right) }\right) , \end{aligned}$$therefore,
$$\begin{aligned}&LIFCCA\left( \gamma a_{1}, \gamma a_{2}, \cdots , \gamma a_{n}\right) \nonumber \\&=\left( \begin{array}{ccc}s_{g-\left( \varrho ^{-1}\left( \gamma \left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \right) \varrho (g-\alpha _{(k)})\right) \right) }, \\ s_{\varrho ^{-1}\left( \gamma \left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \right) \varrho \left( \beta _{(k)}\right) \right) }\end{array}\right) . \end{aligned}$$Furthermore,
$$\begin{aligned}&\gamma LIFCCA\left( a_{1}, a_{2}, \cdots , a_{n}\right) \\&=\gamma \left( \begin{array}{ccc}s_{g-\left( \varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \varrho (g-\alpha _{(k)})\right) \right) }, \\ s_{\varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\varrho (\beta _{(k)})\right) \right) }\end{array}\right) \\&=\left( \begin{array}{ccc}s_{g-\left( \varrho ^{-1}\left( \gamma \left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \right) \varrho (g-\alpha _{(k)})\right) \right) }, \\ s_{\varrho ^{-1}\left( \gamma \left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \right) \varrho \left( \beta _{(k)}\right) \right) }\end{array}\right) \\&=LIFCCA\left( \gamma a_{(1)}, \gamma a_{\pi (2)}, \cdots , \gamma a_{(n)}\right) . \end{aligned}$$ -
(2)
As \(a_i \oplus _{{\mathbb {H}}}a=\left( s_{g-\left( \varrho ^{-1}\left( \varrho \left( g-\alpha _i\right) +\varrho \left( g-\alpha \right) \right) \right) }, s_{\varrho ^{-1}\left( \varrho \left( \beta _i\right) +\varrho \left( \beta \right) \right) }\right)\), then
$$\begin{aligned} \begin{aligned}&LIFCCA\left( a_{1}\oplus _{{\mathbb {H}}}a, \cdots , a_{n}\oplus _{{\mathbb {H}}} a\right) \\&=\left( \begin{array}{ccc}s_{g-\left( \varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \left( \varrho (g-\alpha _{(k)})\right) +\varrho (g-\alpha )\right) \right) }, \\ s_{\varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \left( \varrho \left( \beta _{(k)}\right) +\varrho \left( \beta \right) \right) \right) }\end{array}\right) . \end{aligned} \end{aligned}$$As \(\sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) =1\), so
$$\begin{aligned} \begin{aligned}&LIFCCA\left( a_{1}\oplus _{{\mathbb {H}}}a, \cdots , a_{n}\oplus _{{\mathbb {H}}} a\right) \\&=\left( \begin{array}{ccc}s_{g-\left( \varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \left( \varrho (g-\alpha _{(k)})\right) \right) +\varrho (g-\alpha )\right) }, \\ s_{\varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \left( \varrho \left( \beta _{(k)}\right) \right) +\varrho \left( \beta \right) \right) }\end{array}\right) . \end{aligned} \end{aligned}$$And
$$\begin{aligned} \begin{aligned}&LIFCCA\left( a_{1}, \cdots , a_{n}\right) \oplus _{{\mathbb {H}}} a \\&=\left( \begin{array}{ccc}s_{g-\left( \varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \left( \varrho (g-\alpha _{(k)})\right) \right) +\varrho (g-\alpha )\right) }, \\ s_{\varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \left( \varrho \left( \beta _{(k)}\right) \right) +\varrho \left( \beta \right) \right) }\end{array}\right) . \end{aligned} \end{aligned}$$Therefore,
$$\begin{aligned}&LIFCCA\left( a_{1}\oplus _{{\mathbb {H}}}a, \cdots , a_{n}\oplus _{{\mathbb {H}}} a\right) \\&\quad =LIFCCA\left( a_{1}, \cdots , a_{n}\right) \oplus _{{\mathbb {H}}} a. \end{aligned}$$ -
(3)
It is easy to verify (3) hold from (1) and (2).
-
(4)
If \(a_i=a=\left( s_{\alpha }, s_{\beta }\right)\) for \(i=1, \cdots , n\), then
$$\begin{aligned}&LIFCCA\left( a_{1}, \cdots , a_{n}\right) \\&\quad =\left( \begin{array}{ccc}s_{g-\left( \varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \varrho (g-\alpha _{(k)})\right) \right) },\\ s_{\varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\varrho (\beta _{(k)})\right) \right) }\end{array}\right) .\\&\quad =\left( \begin{array}{ccc}s_{g-\left( \varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \varrho (g-\alpha )\right) \right) },\\ s_{\varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\varrho (\beta )\right) \right) }\end{array}\right) .\\&\quad =\left( s_{g-\left( \varrho ^{-1}\left( \varrho (g-\alpha )\right) \right) }, s_{\varrho ^{-1}\left( \varrho (\beta )\right) }\right) .\\&\quad =\left( s_{\alpha }, s_{\beta }\right) \\&\quad = a. \end{aligned}$$ -
(5)
On the one hand, since \(s_{\alpha _{(k)}}\le s_{\alpha _{(k)}^{'}}, s_{\beta _{(k)}}\ge s_{\beta _{(k)}^{'}}\) for all i, we have \(\alpha _{(k)}\le \alpha _{(k)}^{'}\), and so \(g-\alpha _{(k)}\ge g-\alpha _{(k)}^{'}\). As \(\varrho\) and \(\varrho ^{-1}\) are monotonicity decreasing, we have \(\varrho \left( g-\alpha _{(k)}\right) \le \varrho \left( g-\alpha _{(k)}^{'}\right)\), furthermore,
$$\begin{aligned}&\sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\varrho \left( g-\alpha _{(k)}\right) \right) \\&\quad \le \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\varrho \left( g-\alpha _{(k)}^{'}\right) \right) . \end{aligned}$$And so
$$\begin{aligned}&\varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\varrho \left( g-\alpha _{(k)}\right) \right) \right) \\&\ge \varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\varrho \left( g-\alpha _{(k)}^{'}\right) \right) \right) . \\&g-\left( \varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\varrho \left( g-\alpha _{(k)}\right) \right) \right) \right) \\&\le g-\left( \varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\varrho \left( g-\alpha _{(k)}^{'}\right) \right) \right) \right) . \end{aligned}$$On the other hand, as \(\beta _{(k)}\ge \beta _{(k)}^{'}\), so \(\varrho (\beta _{(k)})\le \varrho (\beta _{(k)}^{'})\), we have,
$$\begin{aligned}&\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \varrho (\beta _{(k)})\right) \\&\quad \le \left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \varrho (\beta _{(k)}^{'})\right) . \end{aligned}$$Then
$$\begin{aligned}&\varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \varrho (\beta _{(k)})\right) \\&\quad \ge \varrho ^{-1}\left( \sum _{k=1}^{n}\left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \varrho (\beta _{(k)}^{'})\right) . \end{aligned}$$Therefore, \(LIFCCA\left( a_{1}, \cdots , a_{n}\right) \ge LIFCCA\left( b_1, \cdots , b_{n}\right)\).
-
(6)
It is easy to verify the validity of (6) from (4) and (5).
\(\square\)
B: The Proof of Theorem 2.
Proof
-
(1)
Let \({(k)}\in S_n\) s. t. \(a_{(1)}\le \cdots \le a_{(k-1)}\le a_{(k+1)}\le \cdots \le a_{(n)}\) and \(a_i=a_{(k)}\). As \(c_i\) is unnecessary, so \(\varphi \left( \gimel _{(k)}\right) =\varphi \left( \gimel _{(k)}\bigcup c_{(k+1)}\right) =\varphi \left( \gimel _{(k+1)}\right)\). Hence,
$$\begin{aligned}&LIFCCA\left( a_{1}, \cdots , a_{n}\right) \\&\quad =\left( \oplus _{{\mathbb {H}}}\right) _{k=1}^{n}\left( \left( \varphi \left( \gimel _{(k)}\right) -\varphi \left( \gimel _{(k+1)}\right) \right) a_{(k)}\right) \\&\quad =\left( \varphi \left( \gimel _{(k)}\right) - \varphi \left( \gimel _{(k+1)}\right) \left( \gimel _{(k)}\right) \right) \\&\qquad \oplus _{{\mathbb {H}}}\left( \left( \oplus _{{\mathbb {H}}}\right) _{j=1, j\ne k}^{n}\left( \left( \varphi \left( \gimel _{(j)}\right) -\varphi \left( \gimel _{(j+1)}\right) \right) a_{(j)}\right) \right) \\&\quad =\left( \oplus _{{\mathbb {H}}}\right) _{j=1, j\ne n}^{n}\left( \left( \varphi \left( \gimel _{(j)}\right) -\varphi \left( \gimel _{(j+1)}\right) a_{(j)}\right) \right) \\&\quad =LIFCCA\left( a_1, \cdots , a_{i-1}, a_{i+1}, \cdots , a_{n}\right) . \end{aligned}$$ -
(2)
Let \({(k)}\in S_n\) s. t. \(a_{(1)}\le \cdots \le a_{(k-1)}\le a_{(k+1)}\le \cdots \le a_{(n)}\) and \(a_j=a_{(k)}\). As \(c_j\) is independent, so \(\varphi \left( \gimel _{(k)}\right) =\varphi \left( \gimel _{(k+1)}\right) +\varphi \left( c_{(k)}\right)\). Therefore,
$$\begin{aligned}&LIFCCA\left( a_{1}, \cdots , a_{n}\right) \\&\quad =\left( \begin{array}{ccc}s_{g-\left( \varrho ^{-1}\left( \sum _{i=1}^{n}\left( \varphi (\gimel _{(i)})-\varphi (\gimel _{(i+1)})\right) \varrho (g-\alpha _{(i)})\right) \right) }, \\ s_{\varrho ^{-1}\left( \sum _{i=1}^{n}\left( \varphi (\gimel _{(i)})-\varphi (\gimel _{(i+1)})\varrho (\beta _{(i)})\right) \right) }\end{array}\right) \\&\quad =\left( \begin{array}{ccc}s_{g-\left( \varrho ^{-1}\left( \left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\right) \varrho \left( g-\alpha _{(j)}\right) \right) \right) },\\ s_{\varrho ^{-1}\left( \left( \varphi (\gimel _{(k)})-\varphi (\gimel _{(k+1)})\varrho (\beta _{(i)})\right) +\sum _{i=1,i\ne k}^{n}\left( \varphi (\gimel _{(i)})-\varphi (\gimel _{(i+1)})\varrho (\beta _{(i)})\right) \right) }\end{array}\right) \\&\quad =\left( \begin{array}{ccc}s_{g-\left( \varrho ^{-1}\left( \varphi (\gimel _{(k)})\varrho \left( g-\alpha _{(k)}\right) \right) +\sum _{i=1,i\ne k}^{n}\left( \varphi (\gimel _{(i)})-\varphi (\gimel _{(i+1)})\varrho \left( g-\alpha _{(j)}\right) \right) \right) },\\ s_{\varrho ^{-1}\left( \left( \varphi (\gimel _{(k)})\varrho (\beta _{(k)})\right) +\sum _{i=1,i\ne k}^{n}\left( \varphi (\gimel _{(i)})-\varphi (\gimel _{(i+1)})\varrho (\beta _{(i)})\right) \right) }\end{array}\right) \\&\quad =(a_k)^{\varphi (c_{(k)})}\otimes _{{\mathbb {H}}}LIFCCA\left( a_1, a_2, \cdots , a_{k-1}, a_{k+1}, \cdots , a_{n}\right) . \end{aligned}$$
\(\square\)
Rights and permissions
About this article
Cite this article
Liu, Y., Wei, G., Liu, H. et al. Group decision making for internet public opinion emergency based upon linguistic intuitionistic fuzzy information. Int. J. Mach. Learn. & Cyber. 13, 579–594 (2022). https://doi.org/10.1007/s13042-020-01262-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13042-020-01262-9