[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

General relation-based variable precision rough fuzzy set

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

In order to effectively handle the real-valued data sets in practice, it is valuable from theoretical and practical aspects to combine fuzzy rough set and variable precision rough set so that a powerful tool can be developed. That is, the model of fuzzy variable precision rough set, which not only can handle numerical data but also is less sensitive to misclassification and perturbation,In this paper, we propose a new variable precision rough fuzzy set by introducing the variable precision parameter to generalized rough fuzzy set, i.e., the variable precision rough fuzzy set based on general relation. We, respectively, define the variable precision rough lower and upper approximations of any fuzzy set and it level set with variable precision parameter by constructive approach. Also, we present the properties of the proposed model in detail. Meanwhile, we establish the relationship between the variable precision rough approximation of a fuzzy set and the rough approximation of the level set for a fuzzy set. Furthermore, we give a new approach to uncertainty measure for variable precision rough fuzzy set established in this paper in order to overcome the limitations of the traditional methods. Finally, some numerical example are used to illuminate the validity of the conclusions given in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11:341–356

    Article  MATH  Google Scholar 

  2. Pawlak Z (1991) Rough sets-theoretical aspects of reasoning about data. Kluwer, Dordrecht

    MATH  Google Scholar 

  3. Pawlak Z, Skowron A (2007) Rough sets: some extensions. Inf Sci 177:28–40

    Article  MathSciNet  MATH  Google Scholar 

  4. Pei Z, Pei DW, Li Z (2011) Topology vs generalized rough sets. Int J Approx Reason 52:231–239

    Article  MathSciNet  MATH  Google Scholar 

  5. Yao YY, Zhao L (2012) A measurement theory view on the granularity of partitions. Inf Sci 213:1–13

    Article  MathSciNet  MATH  Google Scholar 

  6. Li JH, Mei CL, Lv Y (2013) Incomplete decision contexts: approximate concept construction, rule acquisition and knowledge reduction. Int J Approx Reason 54(1):149–165

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu D, Li TR, Zhang JB (2014) A rough set-based incremental approach for learning knowledge in dynamic incomplete information systems. Int J Approx Reason 55(8):1764–1786

    Article  MathSciNet  MATH  Google Scholar 

  8. Yao YY (2008) Probabilistic rough set approximations. Int J Approx Reason 49(2):255–271

    Article  MATH  Google Scholar 

  9. Yao YY (2003) Probabilistic approaches to rough sets. Expert Syst 20:287–297

    Article  Google Scholar 

  10. Yu H, Wang GY, Yao YY (2015) Current research and future perspectives on decision-theoretic rough sets. Chin J Comput 38(8):1628–1639

    MathSciNet  Google Scholar 

  11. Qian YH, Zhang H, Sang YL, Liang JY (2014) Multigranulation decision-theoretic rough sets. Int J Approx Reason 55:225–237

    Article  MathSciNet  MATH  Google Scholar 

  12. Jia XY, Liao WH, Tang ZM, Shang L (2013) Minimum cost attribute reduction in decision-theoretic rough set models. Inf Sci 219(10):151–167

    Article  MathSciNet  MATH  Google Scholar 

  13. Liang DC, Liu D (2015) Deriving three-way decisions from intuitionistic fuzzy decision-theoretic rough sets. Inf Sci 300:28–48

    Article  MathSciNet  Google Scholar 

  14. Ziarko W (1993) Variable precision rough set model. J Comput Syst Sci 46:39–59

    Article  MathSciNet  MATH  Google Scholar 

  15. Mi JS, Wu WZ, Zhang WX (2004) Approaches to knowledge reduction based on variable precision rough set model. Inf Sci 159(3–4):255–272

    Article  MathSciNet  MATH  Google Scholar 

  16. Katzberg JD, Ziarko W (1994) Variable precision rough sets with asymmetric bounds. In: Ziarko W (ed) Rough sets, fuzzy sets and knowledge discovery. Springer, Berlin, pp 167–177

    Chapter  Google Scholar 

  17. Lzak D, Ziarko W (2003) Attribute reduction in the Bayesian version of variable precision rough set model. Electron Notes Theor Comput Sci 82(4):1–11

    Article  Google Scholar 

  18. Dubois D, Prade H (1967) Rough fuzzy sets and fuzzy rough sets. Int J Gen Syst 18:145–174

    MATH  Google Scholar 

  19. Dubois D, Prade H (1992) Putting rough sets and fuzzy sets together. In: Slowinski R (ed) Intelligent decision support. Handbook of applications and advances of the rough sets. Kluwer, Dordrecht

  20. Nakamura A (1992) Application of fuzzy-rough classifications to logics. In: Slowinski R (ed) Intelligent decision support. Handbook of applications and advances of the rough sets. Kluwer, Dordrecht

  21. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  Google Scholar 

  22. Daniel S, Chen DG, Tsang ECC, John WT, Wang XZ (2005) On the generalization of fuzzy rough sets. IEEE Trans Fuzzy Syst 13(3):343–361

    Article  Google Scholar 

  23. Sun BZ, Ma WM, Liu Q (2013) An approach to decision making based on intuitionistic fuzzy rough sets over two universes. J Oper Res Soc 64(7):1079–1089

    Article  Google Scholar 

  24. Zhao SY, Tsang ECC, Chen DG (2009) The model of fuzzy variable precision rough sets. IEEE Trans Fuzzy Syst 17(2):451–467

    Article  Google Scholar 

  25. Tsang ECC, Zhao SY, Zhou CL (2011) A property of reductions in fuzzy variable precision rough set model. In: Proceedings of ICMLC2011, pp 160–165

  26. Wang XZ, Xing HJ, Li Y (2015) A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning. IEEE Trans Fuzzy Syst 23(5):1638–1654

    Article  Google Scholar 

  27. Wang XZ (2015) Uncertainty in learning from big data-editorial. J Intell Fuzzy Syst 28(5):2329–2330

    Article  Google Scholar 

  28. Sun BZ, Ma WM, Chen DG (2014) Rough approximation of a fuzzy concept on a hybrid attribute information system and its uncertainty measure. Inf Sci 284:60–80

    Article  MathSciNet  MATH  Google Scholar 

  29. Sun BZ, Ma WM (2013) Uncertainty measure for general relation-based rough fuzzy set. Kybernetes 42(6):979–992

    Article  MathSciNet  Google Scholar 

  30. Wang XZ, Aamir R, Fu AM (2015) Fuzziness based sample categorization for classifier performance improvement. J Intell Fuzzy Syst 29:1185–1196

    Article  MathSciNet  Google Scholar 

  31. Wang R, Kwon S, Wang XZ, Jiang QS (2015) Segment based decision tree induction with continuous valued attributes. IEEE Trans Cybern 45(7):1262–1275

    Article  Google Scholar 

  32. Lu SX, Wang XZ, Zhang GQ, Zhou X (2015) Effective algorithms of the Moore–Penrose inverse matrices for extreme learning machine. Intell Data Anal 19(4):743–760

    Article  Google Scholar 

  33. Sun BZ, Ma WM, Chen XT (2015) Fuzzy rough set on probabilistic approximation space over two universes and its application to emergency decision-making. Expert Syst 32(4):507–521

    Article  Google Scholar 

  34. Alicja AR, Leszek R (2004) Variable precision fuzzy rough sets. In: Peters JF et al (eds) Transactions on rough sets I. LNCS, vol 3100, pp 144–160

  35. Alicja AR, Leszek R (2005) Variable precision fuzzy rough sets model in the analysis of process data. In: International workshop on rough sets, fuzzy sets, data mining, and granular computing, Canada, pp 354–363

  36. Ren ZB, Zhang GS (2009) The model of variable precision fuzzy rough sets and its properties. Math Pract Theory 39(4):210–214

    MathSciNet  Google Scholar 

  37. Huang CE, Zhang Zl (2004) Variable precision fuzzy rough sets model based cut sets. Fuzzy Syst Math 18:200–202

    Google Scholar 

  38. Cornelis C, Cock MD, Radzikowska AM (2007) Vaguely quantified rough sets. Lect Notes Comput Sci 4482:87–94

    Article  Google Scholar 

  39. Xu WH, Zhang XT, Wang QR (2011) Variable precision fuzzy rough set based on inclusion degree. Comput Sci 39(9):230–234

    Google Scholar 

  40. Skowron A, Stepaniuk J (1996) Tolerance approximation spaces. Fundam Inform 27:245–253

    MathSciNet  MATH  Google Scholar 

  41. Tsang ECC, Ma WM, Sun BZ (2011) Variable precision rough fuzzy set based on general relations. In: Proceedings of ICMLC2011, pp 195–199

  42. Deng F, Yao YY (2014) Decision-theoretic three-way approximations of fuzzy sets. Inf Sci 279:702–715

    Article  MathSciNet  MATH  Google Scholar 

  43. Gong ZT, Sun BZ, Shao YB, Chen DG (2005) Variable Precision rough set model based on general relations. J Lanzhou Univ (Nat Edn) 41(6):110–114

    MathSciNet  MATH  Google Scholar 

  44. Duda RO, Hart PE (1973) Pattern classification and scene analysis. Wiley press, New York

    MATH  Google Scholar 

  45. Dubois D, Prade H (2000) Fundamentals of fuzzy sets. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  46. Sun BZ, Ma WM, Zhao HY (2015) Decision-theoretic rough fuzzy set model and application. Inf Sci 283:180–196

    Article  MathSciNet  MATH  Google Scholar 

  47. Sarkar M (2002) Rough-fuzzy functions in classification. Fuzzy Sets Syst 132:353–369

    Article  MathSciNet  MATH  Google Scholar 

  48. Sun BZ, Gong ZT, Jiao YL (2009) Fuzzy rough set model based on level-set of fuzzy sets. Comput Eng Appl 45(8):47–49

    Google Scholar 

  49. Liu XU (1992) Distance measure and similarity measure of fuzzy sets and their relations. Fuzzy Sets Syst 52:305–318

    Article  MathSciNet  MATH  Google Scholar 

  50. Sun BZ, Ma WM (2011) Fuzzy rough set model on two different universes and its application. Appl Math Model 35:1798–1809

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the Editor in Chief Professor Xi-Zhao Wang, and the three anonymous referees for their thoughtful comments and valuable suggestions which lead to a significant improvement on the manuscript. E. C. C. Tsang was supported by the Macao Science and Technology Development Fund \(\#002/2011/A\) and Fund \(\#100/2013/A3.\) B. Sun was supported by the National Science Foundation of China (71571090, 71161016), the Fundamental Research Funds for the Central Universities (JB150605), the Chinese Postdoctoral Science Foundation (XJS15067).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bingzhen Sun or Weimin Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsang, E.C.C., Sun, B. & Ma, W. General relation-based variable precision rough fuzzy set. Int. J. Mach. Learn. & Cyber. 8, 891–901 (2017). https://doi.org/10.1007/s13042-015-0465-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-015-0465-z

Keywords

Navigation