[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A comparison of three types of rough fuzzy sets based on two universal sets

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

The extension of rough set model is an important research direction in rough set theory. This paper presents two new extensions of the rough set model over two different universes. By means of a binary relation between two universes of discourse, two pairs of rough fuzzy approximation operators are proposed. These models guarantee that the approximating sets and the approximated sets are on the same universes of discourse. Furthermore, some interesting properties are investigated, the connections between relations and rough fuzzy approximation operators are examined. Finally, the connections of these approximation operators are made, and conditions under which these approximation operators made equivalent are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

\({\mathbf{\mathcal{P}}}(U)\) :

Power set of the universe set U

\({\mathbf{\mathcal{F}}}({\text{U}})\) :

Fuzzy power set of the universe set U

\({\text{F}}\left( {\text{x}} \right)\) :

Successor neighborhood of x

\(G\left( y \right)\) :

Predecessor neighborhood of y

\({\underline{R}}_{s}\) :

Generalized rough fuzzy lower approximation operator with respect to the successor neighborhood

\(\bar{R}_{s}\) :

Generalized rough fuzzy upper approximation operator with respect to the successor neighborhood

\({\underline{R}}_{p}\) :

Generalized rough fuzzy lower approximation operator with respect to the predecessor neighborhood

\(\bar{R}_{p}\) :

Generalized rough fuzzy upper approximation operator with respect to the predecessor neighborhood

\({\underline{R}}^{*}\) :

Revised rough fuzzy lower approximation operator

\(\bar{R}^{*}\) :

Revised rough fuzzy upper approximation operator

\({\underline{R}}^{{\prime }}\) :

Weak rough fuzzy lower approximation operator

\(\bar{R}^{\prime }\) :

Weak rough fuzzy upper approximation operator

\({\underline{R}}^{\prime \prime }\) :

Strong rough fuzzy lower approximation operator

\(\bar{R}^{\prime \prime }\) :

Strong rough fuzzy upper approximation operator

References

  1. Abd El-Monsef ME, Kozae AM, Salama AS, Aqeel RM (2012) A comprehensive study of rough sets and rough fuzzy sets on two universes. J Comput 4(3):94–101

    Google Scholar 

  2. Allam AA, Bakeir MY, Abo-Tabl EA (2006) New approach for closure spaces by relations. Acta Mathematica Academiae Paedagogicae Nyregyhziensis 22:285–304

    MathSciNet  MATH  Google Scholar 

  3. Boixader D, Jacas J, Recasens J (2000) Upper and lower approximations of fuzzy sets. Int J Gen Syst 29:555–568

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonikowski Z (1994) Algebraic structure of rough sets. In: Ziarko WP (ed) Rough sets, fuzzy sets and knowledge discovery. Springer, London, pp 242–247

    Chapter  Google Scholar 

  5. Chakrabarty K, Biawas R, Nanda S (2000) Fuzziness in rough sets. Fuzzy Sets Syst 10:247–251

    Article  MathSciNet  MATH  Google Scholar 

  6. Dubois D, Prade H (1990) Rough fuzzy sets and fuzzy rough sets. Int J Gen Syst 17:191–208

    Article  MATH  Google Scholar 

  7. Dubois D, Prade H (1992) Putting fuzzy sets and rough sets together. In: Slowinski R (ed) Intelligence Decision Support. Kluwer Academic, Dordrecht, pp 203–232

    Chapter  Google Scholar 

  8. Feng T, Mi J, Wu W (2006) Covering-based generalized rough fuzzy sets. In: Wang G et al (eds) RSKT 2006, LNAI 4062, pp 208–215

  9. Gong Z, Zhang X (2014) Variable precision intuitionistic fuzzy rough sets model and its application. Int J Mach Learn Cybern 5(2):263–280

    Article  Google Scholar 

  10. Greco S, Matarazzo B, Slowinski R (1999) Theory and methodology: rough approximation of a preference relation by dominance relations. Eur J Oper Res 117:63–83

    Article  MATH  Google Scholar 

  11. Greco S, Matarazzo B, Slowinski R (2002) Rough approximation by dominance relations. Int J Intell Syst 17:153–171

    Article  MATH  Google Scholar 

  12. Huynh VN, Nakamori Y (2005) A roughness measure for fuzzy sets. Inf Sci 173:255–275

    Article  MathSciNet  MATH  Google Scholar 

  13. Inuiguchi M, Tanino T (2002) New fuzzy rough set based on certainty qualification. In: Pal SK, Polkowski L, Skowron A (eds) Rough-neural computing: techniques for computing with words. Springer, Berlin, pp 277–296

    Google Scholar 

  14. Ju H, Yang X, Song X, Qi Y (2014) Dynamic updating multigranulation fuzzy rough set: approximations and reducts. Int J Mach Learn Cybern 5(6):981–990

    Article  Google Scholar 

  15. Kondo M (2005) Algebraic approach to generalized rough sets. Lect Notes Artif Intell 3641:132–140

    MATH  Google Scholar 

  16. Kondo M (2006) On the structure of generalized rough sets. Inf Sci 176:589–600

    Article  MathSciNet  MATH  Google Scholar 

  17. Kryszkiewicz M (1998) Rough set approach to incomplete information systems. Inf Sci 112:39–49

    Article  MathSciNet  MATH  Google Scholar 

  18. Li TJ, Zhang WX (2008) Rough fuzzy approximations on two universes of discourse. Inf Sci 178:892–906

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin TY (1989) Neighborhood systems and approximation in database and knowledge bases. In: Proceedings of the fourth international symposium on methodologies of intelligent systems, pp 75–86

  20. Lin TY, Huang KJ, Liu Q, Chen W (1990) Rough sets, neighborhood systems and approximation. In: Proceedings of the fifth international symposium on methodologies of intelligent systems, selected papers, Knoxville, Tennessee, pp 130–141

  21. Liu GL (2005) Rough sets over the boolean algebras. Lecture Notes in Artificial Intelligence 3641:24–131

    Google Scholar 

  22. Mi J-S, Leung Y, Wu W-Z (2005) An uncertainty measure in partition-based fuzzy rough sets. Int J Gen Syst 34:77–90

    Article  MathSciNet  MATH  Google Scholar 

  23. Nakamura A (1998) Fuzzy rough set. Note Mult-Valued Log Jpn 9(8):1–8

    Google Scholar 

  24. Nanda S, Majumda S (1992) Fuzzy rough set. Fuzzy Sets Syst 45:157–160

    Article  MathSciNet  Google Scholar 

  25. Pawlak Z (1982) Rough sets. Int J Comput Inform Sci 11:341–356

    Article  MathSciNet  MATH  Google Scholar 

  26. Pawlak Z (1991) Rough sets-theoretical aspects of reasoning about data. Kluwer Academic Publishers, Boston

    MATH  Google Scholar 

  27. Pomykala JA (1987) Approximation operations in approximation space. Bull Pol Acad Sci Math 35:653–662

    MathSciNet  MATH  Google Scholar 

  28. Pomykala JA (1988) On definability in the nondeterministic information system. Bull Pol Acad Sci Math 36:193–210

    MathSciNet  MATH  Google Scholar 

  29. Qian Y, Liang J, Wei W (2013) Consistency-preserving attribute reduction in fuzzy rough set framework. Int J Mach Learn Cybern 4(4):287–299

    Article  Google Scholar 

  30. Radzikowska AM, Kerre EE (2002) A comparative study of fuzzy rough sets. Fuzzy Sets Syst 126:137–155

    Article  MathSciNet  MATH  Google Scholar 

  31. Radzikowska AM, Kerre EE (2004) L-fuzzy rough sets. In: Peter JF et al (eds) Artificial intelligence and soft computing—ICAISC2004, LNCS 3135, vol 3070, pp. 526–531

  32. Skowron A, Stepaniuk J (1996) Tolerance approximation spaces. Fundam Inform 27:245–253

    MathSciNet  MATH  Google Scholar 

  33. Skowron A, Swiniarski R, Synak P (2005) Approximation spaces and information granulation, In: Peters JF, Skowron A (eds) Transactions on rough sets III, LNCS 3400, pp 175–189

  34. Slowinski R, Vanderpooten D (2000) A generalized definition of rough approximations based on similarity. IEEE Trans Knowl Data Eng 12(2):331–336

    Article  Google Scholar 

  35. Stepaniuk J (1998) Approximation spaces in extensions of rough set theory. In: Polkowski L, Skowron A (eds) RSCTC’98, LNAI 1424, pp 290–297

  36. Sun BZ, Ma WM (2011) Fuzzy rough set model on two different universes and its application. Appl Math Model 35:1798–1809

    Article  MathSciNet  MATH  Google Scholar 

  37. Wong SK, Wang LS, Yao YY (1992) Interval structure: a framework for representing uncertain information. In: Proceedings of conference on uncertain artificial intelligence, pp 336–343

  38. Wong SK, Wang LS, Yao YY (1995) On modeling uncertainty with interval structure. Comput Intell 11:406–426

    Article  MathSciNet  Google Scholar 

  39. Wu W-Z, Leung Y, Mi J-S (2005) On characterizations of (i, t)-fuzzy rough approximation operators. Fuzzy Sets Syst 154:76–102

    Article  MathSciNet  MATH  Google Scholar 

  40. Wu WZ, Leung Y, Zhang WX (2006) On generalized rough fuzzy approximation operators. In: Peters JF, Skowron A (eds) Transactions on rough sets V, LNCS 4100, pp 263–284

  41. Wu W-Z, Zhang W-X (2003) Generalized fuzzy rough sets. Inf Sci 15:263–282

    Article  MathSciNet  MATH  Google Scholar 

  42. Wu W-Z, Zhang W-X (2004) Constructive and axiomatic approaches of fuzzy approximation operators. Inf Sci 159:233–254

    Article  MathSciNet  MATH  Google Scholar 

  43. Xu W, Sun W, Liu Y, Zhang W (2013) Fuzzy rough set models over two universes. Int J Mach Learn Cybern 4(6):631–645

    Article  Google Scholar 

  44. Yang H-L (2012) S-G. Li, S. Wang, J. Wang, Bipolar fuzzy rough set model on two different universes and its application. Knowl-Based Syst 35:94–101

    Article  Google Scholar 

  45. Yang X, Yang Y (2013) Independence of axiom sets on intuitionistic fuzzy rough approximation operators. Int J Mach Learn Cybern 4(5):505–513

    Article  MathSciNet  Google Scholar 

  46. Yao YY (1997) Combination of rough and fuzzy sets based on α -level sets. In: Lin TY, Cercone N (eds) Rough sets and data mining: analysis for imprecise data. Kluwer Academic Publishers, Boston, pp 301–321

    Chapter  Google Scholar 

  47. Yao YY (1998) Generalized rough set models. In: Polkowski L et al (eds) Rough sets in knowledge discovery, methodology and applications, 1. Physical-Verlag, Heidelberg, pp 286–318

    Google Scholar 

  48. Yao YY (1998) Constructive and algebraic methods of the theory of rough sets. Inf Sci 109:21–47

    Article  MathSciNet  MATH  Google Scholar 

  49. Yao YY (1998) Relational interpretations of neighborhood operators and rough set approximation operators. Inf Sci 111:239–259

    Article  MathSciNet  MATH  Google Scholar 

  50. Yao YY (1999) Rough sets, neighborhood systems, and granular computing. In: Meng M (ed) Proceedings of the 1999 IEEE Canadian conference on electrical and computer engineering, Edmonton, Canada. IEEE press, pp 1553–1558

  51. Yao YY, Lin TY (1996) Generalization of rough sets using modal logic. Intell Autom Soft Comput Int J 2:103–120

    Article  Google Scholar 

  52. Yao YY, Wong SKM, Wang LS (1995) A non-numeric approach to uncertain reasoning. Int J Gen Syst 23:343–359

    Article  MATH  Google Scholar 

  53. Yao YY, Wong SKM, Lin TY (1997) A review of rough set models. In: Lin TY, Cercone N (eds) Rough sets and data mining: analysis for imprecise data. Kluwer Academic Publishers, Boston, pp 47–75

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editors and the anonymous reviewers for their valuable comments and suggestions which have helped immensely in improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Aqeel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd El-Monsef, M.E., El-Gayar, M.A. & Aqeel, R.M. A comparison of three types of rough fuzzy sets based on two universal sets. Int. J. Mach. Learn. & Cyber. 8, 343–353 (2017). https://doi.org/10.1007/s13042-015-0327-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-015-0327-8

Keywords

Navigation