[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

GIS-based landslide susceptibility mapping using bivariate statistical analysis in Devrek (Zonguldak-Turkey)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Devrek town with increasing population is located in a hillslope area where some landslides exist. Therefore, landslide susceptibility map of the area is required. The purpose of this study was to generate a landslide susceptibility map using a bivariate statistical index and evaluate and compare the results of the statistical analysis conducted with three different approaches in seed cell concept resulting in different data sets in Geographical Information Systems (GIS) based landslide susceptibility mapping applied to the Devrek region. The data sets are created from the seed cells of (a) crowns and flanks, (b) only crowns, and (c) only flanks of the landslides by using ten different causative parameters of the study area. To increase the data dependency of the analysis, all parameter maps are classified into equal frequency classes based directly on the percentile divisions of each corresponding seed cell data set. The resultant maps of the landslide susceptibility analysis indicate that all data sets produce fairly acceptable results. In each data set analysis, elevation, lithology, slope, aspect, and drainage density parameters are found to be the most contributing factors in landslide occurrences. The results of the three data sets are compared using Seed Cell Area Indexes (SCAI). This comparison shows that the crown data set produces the most accurate and successful landslide susceptibility map of the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Afifi AA, Clark V (1998) Computer aided multivariate analysis. Chapman Hall, London

    Google Scholar 

  • Akgün A, Bulut F (2007) GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region. Environ Geol 51:1377–1387

    Article  Google Scholar 

  • Akgün A, Dag S, Bulut F (2008) Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environ Geol 54:1127–1143

    Article  Google Scholar 

  • Akgün A, Türk N (2010) Landslide susceptibility mapping for Ayvalık (Western Turkey) and its vicinity by multicriteria decision analysis. Environ Earth Sci 61:595–611

    Article  Google Scholar 

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44

    Article  Google Scholar 

  • Anbalagan R (1992) Landslide hazard evaluation and zonation mapping in mountainous terrain. Eng Geol 32:269–277

    Article  Google Scholar 

  • Atkinson PM, Massari R (1998) Generalised linear modelling of susceptibility to landsliding in the Central Appenines, Italy. Comput Geosci 24:373–385

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda–Yahiko Mountains, central Japan. Geomorphology 65:15–31

    Article  Google Scholar 

  • Baeza C, Corominas J (2001) Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surf Proc Land 26:1251–1263

    Article  Google Scholar 

  • Baeza C, Lantada N, Moya J (2010a) Influence of sample and terrain unit on landslide susceptibility assessment at La Pobla de Lillet, Eastern Pyrenees, Spain. Environ Earth Sci 60:155–167

    Article  Google Scholar 

  • Baeza C, Lantada N, Moya J (2010b) Validation and evaluation of two multivariate statistical models for predictive shallow landslide susceptibility mapping of the Eastern Pyrenees (Spain). Environ Earth Sci 61:507–523

    Article  Google Scholar 

  • Bai SB, Wang J, Lü GN, Zhou PG, Hou SS, Xu SN (2010) GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology 115:23–31

    Article  Google Scholar 

  • Binaghi E, Luzi L, Madella P, Pergalani F, Rampini A (1998) Slope instability zonation: a comparison between certainty factor and fuzzy Dempster–Shafer approaches. Nat Hazards 17:77–97

    Article  Google Scholar 

  • Can T, Nefeslioglu HA, Gökceoglu C, Sönmez H, Duman TY (2005) Susceptibility assessments of shallowearthflows triggered by heavy rainfall at three subcatchments by logistic regression analyses. Geomorphology 72:250–271

    Article  Google Scholar 

  • Carrara A, Cardinalli M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Proc Land 16:427–445

    Article  Google Scholar 

  • Carrara A, Crosta GB, Frattini P (2003) Geomorphological and historical data in assessing landslide hazard. Earth Surf Proc Land 28:1125–1142

    Article  Google Scholar 

  • Cevik E, Topal T (2003) GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ Geol 44:949–962

    Article  Google Scholar 

  • Cevik E, Topal T (2004) Relocation of a problematic segment of a natural gas pipeline using GIS-based landslide susceptibility mapping, Hendek (Turkey), In: Hack R, Azzam R, Charlier R (eds) Proceedings of the 1st European Regional IAEG conference on engineering geology for infrastructure planning in Europe:a European Perspective, pp 265–274

  • Chang KT, Chiang SH (2009) An integrated model for predicting rainfall-induced landslides. Geomorphology 105:366–373

    Article  Google Scholar 

  • Chang KT, Chiang SH, Hsu ML (2007) Modeling typhoon- and earthquake-induced landslides in a mountainous watershed using logistic regression. Geomorphology 89:335–347

    Article  Google Scholar 

  • Chang TC, Chao RJ (2006) Application of back-propagation networks in debris flow prediction. Eng Geol 85:270–280

    Article  Google Scholar 

  • Chau KT, Chan JE (2005) Regional bias of landslide data in generating susceptibility maps using logistic regression: case of Hong Kong Island. Landslides 2:280–290

    Article  Google Scholar 

  • Chen CH, Ke CC, Wang CL (2009) A back-propagation network for the assessment of susceptibility to rock slope failure in the eastern portion of the Southern Cross-Island Highway in Taiwan. Env Geol 57:723–733

    Article  Google Scholar 

  • Choi J, Oh HJ, Won JS, Lee S (2010) Validation of an artificial neural network model for landslide susceptibility mapping. Environ Earth Sci 60:473–483

    Article  Google Scholar 

  • Clerici A, Perego S, Tellini C, Vescovi P (2002) A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology 48:264–349

    Article  Google Scholar 

  • Clerici A, Perego S, Tellini C, Vescovi P (2006) A GIS-based automated procedure for landslide susceptibility mapping by the Conditional Analysis method: the Baganza valley case study (Italian Northern Apennines). Environ Geol 50:941–961

    Article  Google Scholar 

  • Concha-Dimas A, Campos-Vargas M, Lopez-Miguel C (2007) Comparing heuristic and bivariate methods for refining landslide susceptibility maps in northern Mexico city. Environ Eng Geosci XIII:277–287

    Article  Google Scholar 

  • Conoscenti C, Di Maggio C, Rotigliano E (2008) GIS analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy). Geomorphology 94:325–339

    Article  Google Scholar 

  • Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Dhakal S, Paudyal P (2008a) Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence. Geomorphology 102:496–510

    Article  Google Scholar 

  • Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Masuda T, Nishino K (2008b) GIS-based weights-of-evidence modeling in small catchments for landslide susceptibility mapping. Environ Geol 54:311–324

    Article  Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228

    Article  Google Scholar 

  • Dai FC, Lee CF (2003) A spatiotemporal probabilistic modelling of storminduced shallow landsliding using aerial photographs and logistic regression. Earth Surf Proc Land 28:527–545

    Article  Google Scholar 

  • Dai FC, Lee CF, Li J, Xu ZW (2001) Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Env Geol 40:381–391

    Article  Google Scholar 

  • Das I, Sahoo S, Van Westen C, Stein A, Hack R (2010) Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphology 114:627–637

    Article  Google Scholar 

  • DMI (2007) Devlet Meteoroloji Isleri Genel Müdürlügü

  • Duman TY, Can T, Gökceoglu C, Nefeslioglu HA (2005) Landslide susceptibility mapping of Cekmece area (Istanbul, Turkey) by conditional probability. Hydrogeolo Earth Syst Sci Discuss 2:155–208

    Article  Google Scholar 

  • Duman TY, Can T, Gökceoglu C, Nefeslioglu HA, Sonmez H (2006) Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey. Environ Geol 51:241–256

    Article  Google Scholar 

  • Einstein HH (1988) Special lecture: landslide risk assessment procedure. In: Bonnrad C (ed) Proceedings of 5th international symposium on landslides, Lausanne. AA Balkema, Rotterdam, pp 1075–1090

    Google Scholar 

  • Ercanoglu M (2005) Landslide susceptibility assessment of SE Bartin (West Black Sea region, Turkey) by artificial neural networks. Nat Hazards Earth Syst Sci 5:979–992

    Article  Google Scholar 

  • Ercanoglu M, Gökceoglu C (2002) Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environ Geol 41:720–730

    Article  Google Scholar 

  • Ercanoglu M, Gökceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region Turkey). Eng Geol 75:229–250

    Article  Google Scholar 

  • Ercanoglu M, Gökceoglu C, Van Asch ThWJ (2004) Landslide susceptibility zoning of North of Yenice (NW Turkey) by multivariate statistical techniques. Nat Hazards 32:1–23

    Article  Google Scholar 

  • Ercanoglu M, Kasmer O, Temiz N (2008) Adaptation and comparison of expert opinion to analytical hierarchy process for landslide susceptibility mapping. Bull Eng Geol Environ 67:565–578

    Article  Google Scholar 

  • Erener A, Düzgün HSB (2010) Improvement of statistical landslide susceptibility mapping by using spatial and global regression methods in the case of More and Romsdal (Norway). Landslides 7:55–68

    Article  Google Scholar 

  • Ermini L, Catani F, Casagli N (2005) Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 66:327–343

    Article  Google Scholar 

  • Falaschi F, Giacomelli F, Federici PR, Puccinelli A, D’Amato Avanzi G, Pochini A, Ribolini A (2009) Logistic regression versus artificial neural networks: Landslide susceptibility evaluation in a sample area of the Serchio River valley, Italy. Nat Hazards 50:551–569

    Article  Google Scholar 

  • Fernandez T, Irigary C, Hamdouni RE, Chacón J (2003) Methodology for landslide susceptibility mapping by means of a GIS. Application to the Contraviesa Area (Granada, Spain). Nat Hazards 30:297–308

    Article  Google Scholar 

  • Garcia-Rodriguez MJ, Malpica JA, Benito B, Diaz M (2008) Susceptibility assessment of earthquake-triggered landslides in El Salvador using logistic regression. Geomorphology 95:172–191

    Article  Google Scholar 

  • GDDA (1997) Earthquake zoning map of Turkey. General Directorate of Disaster Affairs. Ministry of Reconstruction and Resettlement of Turkey, Turkey

    Google Scholar 

  • Gökceoglu C, Aksoy H (1996) Landslide susceptibility mapping of the slopes in the residual soils of the Mengen Region (Turkey) by deterministic stability analyses and image processing technique. Eng Geol 44:147–161

    Article  Google Scholar 

  • Gökceoglu C, Sönmez H, Nefeslioglu HA, Duman TY, Can T (2005) The March 17, 2005 Kuzulu landslide (Sivas, Turkey) and landslide susceptibility map of its close vicinity. Eng Geol 81:65–83

    Article  Google Scholar 

  • Gomez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng Geol 78:11–27

    Article  Google Scholar 

  • Görum T, Gönencgil B, Gökceoglu C, Nefeslioglu HA (2008) Implementation of reconstructed geomorphologic units in landslide susceptibility mapping: the Melen Gorge (NW Turkey). Nat Hazards 46:323–351

    Article  Google Scholar 

  • Greco R, Sorriso-Valvo M, Catalano E (2007) Logistic regression analysis in the evaluation of mass movements susceptibility: the Aspromonte case study, Calabria, Italy. Eng Geol 89:47–66

    Article  Google Scholar 

  • Griffiths JS, Mather AE, Hart AB (2002) Landslide susceptibility in the Rio Aguas catchment, SE Spain. Q J Eng Geol and Hydrogeol 35:9–17

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  • Guzzetti F, Galli M, Reichenbach P, Ardizzone F, Cardinali M (2006a) Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Nat Hazards Earth Syst Sci 6:115–131

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006b) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72:272–299

    Article  Google Scholar 

  • Hansen A (1984) Landslide hazard analysis. In: Brunsden D, Prior DB (eds) Slope Instability. Wiley, New York, pp 523–602

    Google Scholar 

  • He YP, Xie H, Cui P, Wei FQ, Zhong DL, Gardner JS (2003) GIS-based hazard mapping and zonation of debris flows in Xiaojiang Basin, Southwestern China. Environ Geol 45:286–293

    Article  Google Scholar 

  • Kanungo DP, Arora MK, Sarkar S, Gupta RP (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng Geol 85:347–366

    Article  Google Scholar 

  • Kanungo DP, Arora MK, Sarkar S, Gupta RP (2009) A fuzzy set based approach for integration of thematic maps for landslide susceptibility zonation. Georisk 3:30–43

    Google Scholar 

  • Karslı F, Atasoy M, Yalcin A, Reis S, Demir O, Gökceoglu C (2009) Effects of land-use changes on landslides in a landslide-prone area (Ardesen, Rize, NE Turkey). Environ Monit Assess 156:241–255

    Article  Google Scholar 

  • KOERI (2007) Kandilli seismological data search. Kandilli Observatory and Earthquake Research Institute, Istanbul

    Google Scholar 

  • Kouli M, Loupasakis C, Soupios P, Vallianatos F (2010) Landslide hazard zonation in high risk areas of Rethymno Prefecture, Crete Island, Greece. Nat Hazards 52:599–621

    Article  Google Scholar 

  • Lamelas MT, Marinoni O, Hoppe A, Riva J (2008) Doline probability map using logistic regression and GIS technology in the central Ebro Basin (Spain). Env Geol 54:963–977

    Article  Google Scholar 

  • Lara M, Sepulveda SA (2010) Landslide susceptibility and hazard assessment in San Ramón Ravine, Santiago de Chile, from an engineering geological Approach. Environ Earth Sci 60:1227–1243

    Article  Google Scholar 

  • Lee S (2005) Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Int J Remote Sens 26:1477–1491

    Article  Google Scholar 

  • Lee S (2007a) Comparison of landslide susceptibility maps generated through multiple logistic regression for three test areas in Korea. Earth Surf Proc Land 32:2133–2148

    Article  Google Scholar 

  • Lee S (2007b) Application and verification of fuzzy algebraic operators to landslide susceptibility mapping. Env Geol 52:615–623

    Article  Google Scholar 

  • Lee S, Evangelista DG (2006) Earthquake-induced landslide-susceptibility mapping using an artificial neural network. Nat Hazards Earth Syst Sci 6:687–695

    Article  Google Scholar 

  • Lee S, Min K (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol 40:1095–1113

    Article  Google Scholar 

  • Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4:33–41

    Article  Google Scholar 

  • Lee S, Ryu JH, Lee MJ, Won JS (2003a) Use of an artificial neural network for analysis of the susceptibility to landslides at Boun, Korea. Env Geol 44:820–833

    Article  Google Scholar 

  • Lee S, Ryu JH, Min K, Won JS (2003b) Landslide susceptibility analysis using GIS and artificial neural network. Earth Surf Proc Land 28:1361–1376

    Article  Google Scholar 

  • Lee S, Ryu JH, Lee MJ, Won JS (2006) The application of artificial neural networks to landslide susceptibility mapping at Janghung, Korea. Math Geol 38:199–220

    Article  Google Scholar 

  • Lee S, Ryu JH, Won JS, Park HJ (2004) Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng Geol 71:289–302

    Article  Google Scholar 

  • Lee S, Sambath T (2006) Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environ Geol 50:847–855

    Article  Google Scholar 

  • Lin ML, Tung CC (2003) A GIS-based potential analysis of the landslides induced by the Chi–Chi Earthquake. Eng Geol 71:63–77

    Article  Google Scholar 

  • Lu P, Rosembaum MS (2003) Artificial neural networks and grey systems for the prediction of slope instability. Nat Hazards 30:383–398

    Article  Google Scholar 

  • Magliulo P, Di Lisio A, Russo F, Zelano A (2008) Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy. Nat Hazards 47:411–435

    Article  Google Scholar 

  • Mathew J, Jha VK, Rawat GS (2007) Weights of evidence modelling for landslide hazard zonation mapping in part of Bhagirathi valley, Uttarakhand. Curr Sci 92:628–638

    Google Scholar 

  • Mathew J, Jha VK, Rawat GS (2009) Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method. Landslides 6:17–26

    Article  Google Scholar 

  • Meusburger K, Alewell C (2009) On the influence of temporal change on the validity of landslide susceptibility maps. Nat Hazards Earth Syst Sci 9:1495–1507

    Article  Google Scholar 

  • MicroImages (2007) Terrain curvature. http://www.microimages.com/documentation/cplates/70CurvScript.pdf

  • Miles SC, Keefer DK (2009) Evaluation of CAMEL-Comprehensive areal model of earthquake-induced landslides. Eng Geol 104:1–15

    Article  Google Scholar 

  • Miller S, Brewer T, Harris N (2009) Rainfall thresholding and susceptibility assessment of rainfall-induced landslides: application to landslide management in St Thomas, Jamaica. Bull Eng Geol Environ 68:539–550

    Article  Google Scholar 

  • MTA (2007) Active fault map of Turkey. http://www.mta.gov.tr/mta_web/dirifay.asp

  • Nandi A, Shakoor A (2010) A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng Geol 110:11–20

    Article  Google Scholar 

  • Nefeslioglu HA, Duman TY, Durmaz S (2008a) Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea Region of Turkey). Geomorphology 94:401–418

    Article  Google Scholar 

  • Nefeslioglu HA, Gökceoglu C, Sönmez H (2008b) An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng Geol 97:171–191

    Article  Google Scholar 

  • Oh H, Lee S, Chotikasathien W, Kim CH, Kwon JH (2009) Predictive landslide susceptibility mapping using spatial information in the Pechabun area of Thailand. Env Geol 57:641–651

    Article  Google Scholar 

  • Oh HJ, Lee S, Soedradjat GM (2010) Quantitative landslide susceptibility mapping at Pemalang area, Indonesia. Environ Earth Sci 60:1317–1328

    Article  Google Scholar 

  • Ohlmacher CG, Davis CJ (2003) Using multiple regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69:331–343

    Article  Google Scholar 

  • Özdemir A (2009) Landslide susceptibility mapping of vicinity of Yaka Landslide (Gelendost, Turkey) using conditional probability approach in GIS. Env Geol 57:1675–1686

    Article  Google Scholar 

  • Pachauri AK, Gupta PV, Chander R (1998) Landslide zoning in a part of the Garhwal Himalayas. Env Geol 36:325–334

    Article  Google Scholar 

  • Pachauri AK, Pant M (1992) Landslide hazard mapping based on geological attributes. Eng Geol 32:81–100

    Article  Google Scholar 

  • Paliwal M, Kumar UA (2009) Neural networks and statistical techniques: A review of applications. Expert Systems with Applications 36:2–17

    Article  Google Scholar 

  • Parise M (2001) Landslide mapping techniques and their use in the assessment of the landslide hazard. Phys Chem Earth (C) 26:697–703

    Google Scholar 

  • Pradhan B, Lee S (2009) Landslide risk analysis using artificial neural network model focusing on different training sites. Int J Phys Sci 3:1–15

    Google Scholar 

  • Pradhan B, Lee S (2010a) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environ Earth Sci 60:1037–1054

    Article  Google Scholar 

  • Pradhan B, Lee S (2010b) Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides 7:13–30

    Article  Google Scholar 

  • Pradhan B, Lee S, Buchroithner MF (2009) Use of geospatial data for the development of fuzzy algebraic operators to landslide hazard mapping: a case study in Malaysia. Applied Geomat 1:3–15

    Article  Google Scholar 

  • Pradhan B, Lee S, Buchroithner MF (2010) A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses. Comput Environ Urban Syst 34:216–235

    Article  Google Scholar 

  • Pradhan B, Lee S, Mansor S, Buchroithner MF, Jallaluddin N, Khujaimah Z (2008) Utilization of optical remote sensing data and geographic information system tools for regional landslide hazard analysis by using binomial logistic regression model. J Appl Remote Sens 2:1–11

    Article  Google Scholar 

  • Remondo J, Gonzalez-Diez A, De Teran JRD, Cendrero A (2003) Landslide susceptibility models utilizing spatial data analysis techniques. A case study from the Lower Deba Valley, Guipuzcoa (Spain). Nat Hazards 30:267–279

    Article  Google Scholar 

  • Rossi M, Guzzetti F, Reichenbach P, Mondini A, Peruccacci S (2010) Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology 114:129–142

    Article  Google Scholar 

  • Rozos D, Pyrgiotis L, Skias S, Tsagaratos P (2008) An implementation of rock engineering system for ranking the instability potential of natural slopes in Greek territory. An application in Karditsa County. Landslides 5:261–270

    Article  Google Scholar 

  • Rozos D, Bathrellos GD, Skillodimou HD (2011) Comparison of the implementation of rock engineering system (RES) and analytic hierarchy process (AHP) methods, upon landslide susceptibility mapping, using GIS: a case study from the Eastern Achaia County of Peloponnesus, Greece. Environ Earth Sci. doi:10.1007/s12665-010-0687-z

  • Rupke J, Cammeraat E, Seijmonsbergen AC, Van Westen CJ (1988) Engineering geomorphology of Widentobel Catchment, Appenzell and Sankt Gallen, Switzerland: a geomorphological inventory system applied to geotechnical appraisal of slope stability. Eng Geol 26:33–68

    Article  Google Scholar 

  • Saha AK, Gupta RP, Arora MK (2002) GIS-based landslide hazard zonation in the Bhagirathi (Ganga) valley, Himalayas. Int J Remote Sens 23:357–369

    Article  Google Scholar 

  • Saha AK, Gupta RP, Sarkar I, Arora MK, Csaplovics E (2005) An approach for GIS-based statistical landslide susceptibility zonation—with a case study in the Himalayas. Landslides 2:61–69

    Article  Google Scholar 

  • Santacana N, Baeza B, Corominas J, Paz AD, Marturia (2003) A GIS-based multivariate statistical analysis for shallow landslide susceptibility mapping in la Pobla de Lillet Area (Eastern Pyrenees, Spain). Nat Hazards 30:281–295

    Article  Google Scholar 

  • Soeters R, Van Westen CJ (1996) Slope instability recognition analysis and zonation. In: Turner KT, Schuster RL (eds) Landslides: investigation and mitigation. Transportation Research Board National Research Council, Special Report, Washington, DC, pp 129–177

    Google Scholar 

  • SPSS (2003) Statistical package for the Social Sciences

  • Süzen ML, Doyuran V (2004a) Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey. Eng Geol 71:303–321

    Article  Google Scholar 

  • Süzen ML, Doyuran V (2004b) A comparison of the GIS based landslide susceptibility assessment methods Multivariate versus bivariate. Environ Geol 45:665–679

    Article  Google Scholar 

  • Tangestani MH (2004) Landslide susceptibility mapping using the fuzzy gamma approach in a GIS, Kakan catchment area, southwest Iran. Aust J Earth Sci 51:439–450

    Article  Google Scholar 

  • TNT Mips (2004) TNT Mips Manual: processes

  • Tunusluoglu MC, Gökceoglu C, Nefeslioglu HA, Sönmez H (2008) Extraction of potential debris source areas by logistic regression technique: a case study from Barla, Besparmak and Kapi mountains (NW Taurids, Turkey). Env Geol 54:9–22

    Article  Google Scholar 

  • Uromeihy A, Mahdavifar MR (2000) Landslide hazard zonation of the Khorshrostam area, Iran. Bull Eng Geol Environ 58:207–213

    Article  Google Scholar 

  • Van Westen CJ (1993) Application of geographic information systems to landslide hazard zonation. ITC Publication No: 15. International Institute for Aerospace and Earth Resources Survey, Enschede

    Google Scholar 

  • Van Westen CJ (1994) GIS in landslide hazard zonation: a review, with examples from the Andes of Colombia. In: Price MF, Heywood DI (eds) Geographical information systems in landslide hazard zonation GIS applications for mountain areas. Taylor and Francis, London, pp 135–165

    Google Scholar 

  • Van Westen CJ, Lulie GF (2003) Analyzing the evolution of the Tessina landslide using aerial photographs and digital elevation models. Geomorphology 54:77–89

    Article  Google Scholar 

  • Van Westen CJ, Terlien TJ (1996) An approach towards deterministic landslide hazard analysis in GIS. A case study from Manizales (Colombia). Earth Surf Proc Land 21:853–868

    Article  Google Scholar 

  • Wang HB, Sassa K (2005) Comparative evaluation of landslide susceptibility in Minamata area, Japan. Environ Geol 47:956–966

    Article  Google Scholar 

  • Wang KL, Lin ML (2010) Development of shallow seismic landslide potential map based on Newmark’s displacement: the case study of Chi–Chi earthquake, Taiwan. Environ Earth Sci 60:775–785

    Article  Google Scholar 

  • Wieczorek GF (1984) Preparing a detailed landslide-inventory map for hazard evaluation and reduction. Bull Assoc Eng Geol 21:337–342

    Google Scholar 

  • Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena 1:1–12

    Article  Google Scholar 

  • Yalcin A, Bulut F (2007) Landslide susceptibility mapping using GIS and digital photogrammetric techniques: a case study from Ardesen (NE-Turkey). Nat Hazards 41:201–226

    Article  Google Scholar 

  • Yao X, Than LG, Dai FC (2008) Landslide susceptibility mapping based on Support Vector Machine: a case study on natural slopes of Hong Kong. Geomorphology 101:572–582

    Article  Google Scholar 

  • Yergök AF, Akman Ü, İplikci E, Karabalik N, Keskin İ, Mengi H, Umut M, Armagan F, Erdogan K, Kaymakci H, Cetinkaya A (1987) Batı Karadeniz bölgesinin jeolojisi, MTA Rapor No: 8273 (unpublished)

  • Yesilnacar E, Süzen ML (2006) A land-cover classification for landslide susceptibilty mapping by using feature components. Int J Remote Sens 27:253–275

    Article  Google Scholar 

  • Yesilnacar E, Topal T (2005) Landslide susceptibility mapping: A comparison of logistic regression and neural Networks methods in a medium scale study, Hendek region (Turkey). Eng Geol 79:251–266

    Article  Google Scholar 

  • Yilmaz I (2009a) A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by artificial neural networks. Bull Eng Geol Environ 68:297–306

    Article  Google Scholar 

  • Yilmaz I (2009b) Landslide susceptibility using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey). Comput Geosci 35:1125–1138

    Article  Google Scholar 

  • Yilmaz I (2010a) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci 61:821–836

    Article  Google Scholar 

  • Yilmaz I (2010b) The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability (CP) and artificial neural networks (ANN). Environ Earth Sci 60:505–519

    Article  Google Scholar 

  • Yilmaz I, Yildirim M (2006) Structural and geomorphological aspects of the Kat landslides (Tokat-Turkey), and susceptibility mapping by means of GIS. Env Geol 50:461–472

    Article  Google Scholar 

  • Zhou G, Esaki T, Mitani Y, Xie M, Mori J (2003) Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach. Eng Geol 68:373–386

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer Topal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yilmaz, C., Topal, T. & Süzen, M.L. GIS-based landslide susceptibility mapping using bivariate statistical analysis in Devrek (Zonguldak-Turkey). Environ Earth Sci 65, 2161–2178 (2012). https://doi.org/10.1007/s12665-011-1196-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-011-1196-4

Keywords

Navigation