[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Machine learning techniques for the Schizophrenia diagnosis: a comprehensive review and future research directions

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Schizophrenia (SCZ) is a brain disorder where different people experience different symptoms, such as hallucination, delusion, flat-talk, disorganized thinking, etc. In the long term, this can cause severe effects and diminish life expectancy by more than ten years. Therefore, early and accurate diagnosis of SCZ is prevalent, and modalities like structural magnetic resonance imaging, functional MRI (fMRI), diffusion tensor imaging, and electroencephalogram assist in witnessing the brain abnormalities of the patients. Moreover, for accurate diagnosis of SCZ, researchers have used machine learning (ML) algorithms for the past decade to distinguish the brain patterns of healthy and SCZ brains using MRI and fMRI images. This paper seeks to acquaint SCZ researchers with ML and to discuss its recent applications to the field of SCZ study. This paper comprehensively reviews state-of-the-art techniques such as ML classifiers, artificial neural network, deep learning models, methodological fundamentals, and applications with previous studies. The motivation of this paper is to benefit from finding the research gaps that may lead to the development of a new model for accurate SCZ diagnosis. The paper concludes with the research finding, followed by the future scope that directly contributes to new research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Algumaei AH, Algunaid RF, Rushdi MA, Yassine IA (2022) Feature and decision-level fusion for schizophrenia detection based on resting-state fmri data. Plos One 17(5):e0265300

    Google Scholar 

  • Amin J, Sharif M, Yasmin M, Fernandes SL (2018) Big data analysis for brain tumor detection: deep convolutional neural networks. Future Gener Comput Syst 87:290–297

    Google Scholar 

  • Arbabshirani MR, Kiehl K, Pearlson G, Calhoun VD (2013) Classification of schizophrenia patients based on resting-state functional network connectivity. Front Neurosci 7:133

    Google Scholar 

  • ArivuSelvan K, Moorthy ES (2020) Analysing thalamus and its sub nuclei in MRI brain image to distinguish schizophrenia subjects using back propagation neural network. Int J Internet Technol Secur Trans 10(1–2):196–210

    Google Scholar 

  • Aslan Z, Akin M (2022) A deep learning approach in automated detection of schizophrenia using scalogram images of eeg signals. Phys Eng Sci Med 45(1):83–96

    Google Scholar 

  • Bae Y, Kumarasamy K, Ali IM, Korfiatis P, Akkus Z, Erickson BJ (2018) Differences between schizophrenic and normal subjects using network properties from fMRI. J Dig Imaging 31(2):252–261

    Google Scholar 

  • Bagherzadeh S, Shahabi MS, Shalbaf A (2022) Detection of schizophrenia using hybrid of deep learning and brain effective connectivity image from electroencephalogram signal. Comput Biol Med 146:105570

    Google Scholar 

  • Calhoun VD, Amin MF, Hjelm D, Damaraju E, Plis SM (2017) A deep-learning approach to translate between brain structure and functional connectivity 6155–6159

  • Castellani U, Rossato E, Murino V, Bellani M, Rambaldelli G, Perlini C, Tomelleri L, Tansella M, Brambilla P (2012) Classification of schizophrenia using feature-based morphometry. J Neural Transm 119(3):395–404

    Google Scholar 

  • Castro E, Gómez-Verdejo V, Martínez-Ramón M, Kiehl KA, Calhoun VD (2014) A multiple kernel learning approach to perform classification of groups from complex-valued fMRI data analysis: application to schizophrenia. NeuroImage 87:1–17

    Google Scholar 

  • Chen Z, Yan T, Wang E, Jiang H, Tang Y, Yu X, Zhang J, Liu C (2020) Detecting abnormal brain regions in schizophrenia using structural MRI via machine learning. Comput Intell Neurosci 2020

  • Chin R, You AX, Meng F, Zhou J, Sim K (2018) Recognition of schizophrenia with regularized support vector machine and sequential region of interest selection using structural magnetic resonance imaging. Sci Rep 8(1):1–10

    Google Scholar 

  • Cox RW (1996) Afni: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173

    Google Scholar 

  • Cui Y, Li C, Liu B, Sui J, Song M, Chen J, Chen Y, Guo H, Li P, Lu L (2022) Consistent brain structural abnormalities and multisite individualised classification of schizophrenia using deep neural networks. Br J Psychiatry 1–8

  • de Pierrefeu A, Fovet T, Hadj‐Selem F, Löfstedt T, Ciuciu P, Lefebvre S, Thomas P, Lopes R, Jardri R, Duchesnay E (2018) Prediction of activation patterns preceding hallucinations in patients with schizophrenia using machine learning with structured sparsity. Hum Brain Mapping 39(4):1777–1788

    Google Scholar 

  • De Rosa A, Fontana A, Nuzzo T, Garofalo M, Di Maio A, Punzo D, Copetti M, Bertolino A, Errico F, Rampino A (2022) Machine learning algorithm unveils glutamatergic alterations in the post-mortem schizophrenia brain. Schizophrenia 8(1):1–16

    Google Scholar 

  • Febles ES, Ortega MO, Sosa MV, Sahli H (2022) Machine learning techniques for the diagnosis of schizophrenia based on event related potentials. medRxiv

  • Feigin VL, Abajobir AA, Abate KH, Abd-Allah F, Abdulle AM, Abera SF, Abyu GY, Ahmed MB, Aichour AN, Aichour I (2017) Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet Neurol 16(11):877–897

    Google Scholar 

  • Filipovych R, Resnick SM, Davatzikos C (2012) Jointmmcc: joint maximum-margin classification and clustering of imaging data. IEEE Trans Med Imaging 31(5):1124–1140

    Google Scholar 

  • Friston KJ (2003) Statistical parametric mapping. Springer, Berlin, pp 237–250

    Google Scholar 

  • Gagana B (2021) New insights from old data: multimodal classification of schizophrenia using automated deep learning configurations. bioRxiv 2020–2011

  • Gil D, Manuel DJ (2009) Diagnosing parkinson by using artificial neural networks and support vector machines. Glob J Comput Sci Technol 9(4)

  • Gur RE, Gur RC (2022) Functional magnetic resonance imaging in schizophrenia. Dial Clin Neurosci

  • Han S, Huang W, Zhang Y, Zhao J, Chen H (2017) Recognition of early-onset schizophrenia using deep-learning method 4(1):1–6

  • Hu M, Sim K, Zhou JH, Jiang X, Guan C (2020) Brain MRI-based 3d convolutional neural networks for classification of schizophrenia and controls 1742–1745

  • Hu M, Qian X, Liu S, Koh AJ, Sim K, Jiang X, Guan C, Zhou JH (2021) Structural and diffusion mri based schizophrenia classification using 2d pretrained and 3d naive convolutional neural networks. Schizophr Res

  • Jafri MJ, Calhoun VD (2006) Functional classification of schizophrenia using feed forward neural networks, pp 6631–6634

  • Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) Fsl. Neuroimage 62(2):782–790

    Google Scholar 

  • Kadry S, Taniar D, Damaševičius R, Rajinikanth V (2021) Automated detection of schizophrenia from brain mri slices using optimized deep-features, pp 1–5

  • Klöppel S, Abdulkadir A, Jack Jr CR, Koutsouleris N, Mourão-Miranda J, Vemuri P (2012) Diagnostic neuroimaging across diseases. Neuroimage 61(2):457–463

    Google Scholar 

  • Korda AI, Ruef A, Neufang S, Davatzikos C, Borgwardt S, Meisenzahl EM, Koutsouleris N (2021) Identification of voxel-based texture abnormalities as new biomarkers for schizophrenia and major depressive patients using layer-wise relevance propagation on deep learning decisions. Psychiatry Res Neuroimaging 313:111303

    Google Scholar 

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Google Scholar 

  • Lei D, Pinaya WH, Young J, van Amelsvoort T, Marcelis M, Donohoe G, Mothersill DO, Corvin A, Vieira S, Huang X (2020) Integrating machining learning and multimodal neuroimaging to detect schizophrenia at the level of the individual. Hum Brain Mapping 41(5):1119–1135

    Google Scholar 

  • Li J, Sun Y, Huang Y, Bezerianos A, Yu R (2019) Machine learning technique reveals intrinsic characteristics of schizophrenia: an alternative method. Brain Imaging Behav 13(5):1386–1396

    Google Scholar 

  • Li Z, Li W, Wei Y, Gui G, Zhang R, Liu H, Chen Y, Jiang Y (2021) Deep learning based automatic diagnosis of first-episode psychosis, bipolar disorder and healthy controls. Comput Med Imaging Graphics 89:101882

    Google Scholar 

  • Lin X, Li W, Dong G, Wang Q, Sun H, Shi J, Fan Y, Li P, Lu L (2021) Characteristics of multimodal brain connectomics in patients with schizophrenia and the unaffected first-degree relatives. Front Cell Dev Biol 9:226

    Google Scholar 

  • Liu J, Li M, Pan Y, Wu FX, Chen X, Wang J (2017) Classification of schizophrenia based on individual hierarchical brain networks constructed from structural MRI images. IEEE Trans Nanobiosci 16(7):600–608

    Google Scholar 

  • Liu P, Mei X, Fei S (2019) A compound classification model for schizophrenia based on brain fmri and network modelling 7694–7697

  • Markiewicz CJ, Gorgolewski KJ, Feingold F, Blair R, Halchenko YO, Miller E, Hardcastle N, Wexler J, Esteban O, Goncalves M (2021) Openneuro: an open resource for sharing of neuroimaging data. BioRxiv

  • Masoudi B, Daneshvar S, Razavi SN (2021) Multi-modal neuroimaging feature fusion via 3d convolutional neural network architecture for schizophrenia diagnosis. Intell Data Anal 25(3):527–540

    Google Scholar 

  • Modinos G, Pettersson-Yeo W, Allen P, McGuire PK, Aleman A, Mechelli A (2012) Multivariate pattern classification reveals differential brain activation during emotional processing in individuals with psychosis proneness. Neuroimage 59(3):3033–3041

    Google Scholar 

  • Nimkar AV, Kubal DR (2018) Optimization of schizophrenia diagnosis prediction using machine learning techniques, pp 1–6

  • Nsugbe E, Samuel OW, Asogbon MG, Li G (2022) Intelligence combiner: a combination of deep learning and handcrafted features for an adolescent psychosis prediction using eeg signals, pp 92–97

  • Oh K, Kim W, Shen G, Piao Y, Kang NI, Oh IS, Chung YC (2019) Classification of schizophrenia and normal controls using 3d convolutional neural network and outcome visualization. Schizophr Res 212:186–195

    Google Scholar 

  • Oh J, Oh B-L, Lee K-U, Chae J-H, Yun K (2020) Identifying schizophrenia using structural MRI with a deep learning algorithm. Front Psychiatry 11:16

    Google Scholar 

  • Park YW, Choi D, Lee J, Ahn SS, Lee SK, Lee SH, Bang M (2020) Differentiating patients with schizophrenia from healthy controls by hippocampal subfields using radiomics. Schizophr Res 223:337–344

    Google Scholar 

  • Plis SM, Amin MF, Chekroud A, Hjelm D, Damaraju E, Lee HJ, Bustillo JR, Cho K, Pearlson GD, Calhoun VD (2018) Reading the (functional) writing on the (structural) wall: multimodal fusion of brain structure and function via a deep neural network based translation approach reveals novel impairments in schizophrenia. NeuroImage 181:734–747

    Google Scholar 

  • Pominova M, Kondrateva E, Sharaev M, Bernstein A, Pavlov S, Burnaev E (2019) 3d deformable convolutions for mri classification, pp 1710–1716

  • Pontil M, Verri A (1998) Support vector machines for 3d object recognition. IEEE Trans Pattern Anal Mach Intell 20(6):637–646

    Google Scholar 

  • Rustam Z, Saragih GS (2020) Prediction schizophrenia using random forest. Telkomnika 18(3):1433–1438

    Google Scholar 

  • Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

    Google Scholar 

  • Sharma G, Joshi AM (2022) Szhnn: a novel and scalable deep convolution hybrid neural network framework for schizophrenia detection using multichannel eeg. IEEE Trans Instrum Meas 71:1–9

    Google Scholar 

  • Sharma R, Goel T, Tanveer M, Murugan R (2022) Fdn-adnet: fuzzy ls-twsvm based deep learning network for prognosis of the alzheimer’s disease using the sagittal plane of mri scans. Appl Soft Comput 115:108099

    Google Scholar 

  • Shi D, Li Y, Zhang H, Yao X, Wang S, Wang G, Ren K (2021) Machine learning of schizophrenia detection with structural and functional neuroimaging. Dis Mark 2021:1–2

  • Smucny J, Davidson I, Carter CS (2020) Comparing machine and deep learning-based algorithms for prediction of clinical improvement in psychosis with functional magnetic resonance imaging. Hum Brain Mapping

  • Srinivasagopalan S, Barry J, Gurupur V, Thankachan S (2019) A deep learning approach for diagnosing schizophrenic patients. J Exp Theor Artif Intell 31(6):803–816

    Google Scholar 

  • SupriyaPatro P, Goel T, VaraPrasad S, Tanveer M, Murugan R (2022) Lightweight 3d convolutional neural network for schizophrenia diagnosis using mri images and ensemble bagging classifier. Cogn Comput 1–17

  • Sutcubasi B, Metin SZ, Erguzel TT, Metin B, Tas C, Arikan MK, Tarhan N (2019) Anatomical connectivity changes in bipolar disorder and schizophrenia investigated using whole-brain tract-based spatial statistics and machine learning approaches. Neural Comput Appl 31(9):4983–4992

    Google Scholar 

  • Tanveer M, Jangir J, Ganaie MA, Beheshti I, Tabish M, Chhabra N (2022) Diagnosis of schizophrenia: a comprehensive evaluation. IEEE J Biomed Health Inform. https://doi.org/10.1109/JBHI.2022.3168357

  • Ulaş A, Castellani U, Mirtuono P, Bicego M, Murino V, Cerruti S, Bellani M, Atzori M, Rambaldelli G, Tansella M (2011) Multimodal schizophrenia detection by multiclassification analysis, pp 491–498

  • Ulas A, Castellani U, Murino V, Bellani M, Tansella M, Brambilla P (2012) Biomarker evaluation by multiple kernel learning for schizophrenia detection, pp 89–92

  • Vapnik V, Guyon I, Hastie T (1995) Support vector machines. Mach Learn 20(3):273–297

    Google Scholar 

  • Vieira S, Gong QY, Pinaya WH, Scarpazza C, Tognin S, Crespo-Facorro B, Tordesillas-Gutierrez D, Ortiz-García V, Setien-Suero E, Scheepers FE (2020) Using machine learning and structural neuroimaging to detect first episode psychosis: reconsidering the evidence. Schizophr Bull 46(1):17–26

    Google Scholar 

  • Vyškovskỳ R, Schwarz D, Kašpárek T (2019) Brain morphometry methods for feature extraction in random subspace ensemble neural network classification of first-episode schizophrenia. Neural Comput 31(5):897–918

    MATH  Google Scholar 

  • Wang L, Kogan A, Cobia D, Alpert K, Kolasny A, Miller MI, Marcus D (2013) Northwestern university schizophrenia data and software tool (nusdast). Front Neuroinform 7:25

    Google Scholar 

  • Wang L, Alpert KI, Calhoun VD, Cobia DJ, Keator DB, King MD, Kogan A, Landis D, Tallis M, Turner MD (2016) Schizconnect: mediating neuroimaging databases on schizophrenia and related disorders for large-scale integration. Neuroimage 124:1155–1167

    Google Scholar 

  • Wang T, Bezerianos A, Cichocki A, Li J (2020) Multikernel capsule network for schizophrenia identification. IEEE Trans Cybern

  • Wen Y, Zhou C, Chen L, Deng Y, Cleusix M, Jenni R, Conus P, Do KQ, Xin L (2022) Bridging structural mri with cognitive function for individual level classification of early psychosis via deep learning. medRxiv

  • Wu Y, Xia M, Wang X, Zhang Y (2022) Schizophrenia detection based on eeg using recurrent auto-encoder framework. arXiv:2207.04262

  • Yan W, Calhoun V, Song M, Cui Y, Yan H, Liu S, Fan L, Zuo N, Yang Z, Xu K (2019) Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site fMRI data. EBioMedicine 47:543–552

    Google Scholar 

  • Yang H, Di X, Gong Q, Sweeney J, Biswal B (2020) Investigating inhibition deficit in schizophrenia using task-modulated brain networks. Brain Struct Funct 225(5):1601–1613

    Google Scholar 

  • Yassin W, Nakatani H, Zhu Y, Kojima M, Owada K, Kuwabara H, Gonoi W, Aoki Y, Takao H, Natsubori T (2020) Machine-learning classification using neuroimaging data in schizophrenia, autism, ultra-high risk and first-episode psychosis. Transl Psychiatry 10(1):1–11

    Google Scholar 

  • Zeng LL, Wang H, Hu P, Yang B, Pu W, Shen H, Chen X, Liu Z, Yin H, Tan Q (2018) Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI. EBioMedicine 30:74–85

    Google Scholar 

  • Zhang J, Rao VM, Tian Y, Yang Y, Acosta N, Wan Z, Lee PY, Zhang C, Kegeles LS, Small SA et al (2022) Detecting schizophrenia with 3d structural brain mri using deep learning. arXiv:2206.12980

  • Zhao M, Yan W, Xu R, Zhi D, Jiang R, Jiang T, Calhoun VD, Sui J (2021) An attention-based hybrid deep learning framework integrating temporal coherence and dynamics for discriminating schizophrenia, pp 118–121

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tripti Goel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S., Goel, T., Tanveer, M. et al. Machine learning techniques for the Schizophrenia diagnosis: a comprehensive review and future research directions. J Ambient Intell Human Comput 14, 4795–4807 (2023). https://doi.org/10.1007/s12652-023-04536-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-023-04536-6

Keywords

Navigation