[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Time consistent fuzzy multi-period rolling portfolio optimization with adaptive risk aversion factor

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

This study focuses on a time consistent multi-period rolling portfolio optimization problem under fuzzy environment. An adaptive risk aversion factor is first defined to incorporate investor’s changing psychological risk concerns during the intermediate periods. Within the framework of credibility theory, the future returns of risky assets are represented by triangular and trapezoidal fuzzy variables, respectively, which are estimated by utilizing justifiable granularity principle using real financial data from Shanghai stock exchange (SSE). The return and risk of assets at each Investment period are measured by expected value and entropy, respectively. The problem is then formulated by a series of rolling deterministic linear programmings and solved with simplex methods. Numerical examples are provided to illustrate the effectiveness of the proposed adaptive risk aversion factor and rolling formulation methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abdelaziz FB, Aouni B, Fayedh RE (2007) Multi-objective stochastic programming for portfolio selection. Eur J Oper Res 177:1811–1823

    Article  MATH  Google Scholar 

  • Artzner P, Delbaen F, Eber JM, Heath D, Ku H (2007) Coherent multiperiod risk adjusted values and Bellman’s principle. Ann Oper Res 152:5–22

    Article  MathSciNet  MATH  Google Scholar 

  • Bajeux-Besnainou I, Portait R (1998) Dynamic asset allocation in a mean-variance framework. Manage Sci 44(11):79–95

    Article  MATH  Google Scholar 

  • Bargiela A, Pedrycz W (2012) Granular computing: an introduction. Springer Science & Business Media

  • Basak S, Chabakauri G (2010) Dynamic mean-variance asset allocation. Rev Financ Stud 23:2970–3016

    Article  Google Scholar 

  • Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Math Oper Res 23(4):769–805

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas D, Pachamanova D (2008) Robust multiperiod portfolio management in the presence of transaction costs. Comp Oper Res 35(1):3–17

    Article  MathSciNet  MATH  Google Scholar 

  • Briec W, Kerstens K (2009) Multi-horizon Markowitz portfolio performance appraisals: A general approach. Omega-Int J Manage Sci 37(1):50–62

    Article  Google Scholar 

  • Bjrk T, Murgoci A, Zhou XY (2014) Mean-variance portfolio optimization with statedependent risk aversion. Math Financ 24(1):1–24

    Article  MATH  Google Scholar 

  • Blake D, Wright D, Zhang Y (2013) Target-driven investing: optimal investment strategies in defined contribution pension plans under loss aversion. J Econ Dynam Control 37(1):195–209

    Article  MathSciNet  MATH  Google Scholar 

  • Cai X, Teo KL, Yang X, Zhou XY (2000) Portfolio optimization under a minimax rule. Manage Sci 46(7):957–972

    Article  MATH  Google Scholar 

  • Calafiore GC (2008) Multi-period portfolio optimization with linear control policies. Automatica 44(10):2463–2473

    Article  MathSciNet  MATH  Google Scholar 

  • Chen P, Yang H, Yin G (2008) Markowitzs mean-variance asset-liability management with regime switching: A continuous-time model. Insur Math Econ 43(3):456–465

    Article  MathSciNet  MATH  Google Scholar 

  • Costa OLV, Araujo MV (2008) A generalized multi-period mean-variance portfolio optimization with Markov switching parameters. Automatica 44(10):2487–2497

    Article  MathSciNet  MATH  Google Scholar 

  • Cui X, Li D, Wang S, Zhu S (2012) Better than dynamic meanvariance: time inconsistency and free cash flow stream. Math Financ 22(2):346–378

    Article  MATH  Google Scholar 

  • Dantzig GB, Infanger G (1993) Multi-stage stochastic linear programs for portfolio optimization. Ann Oper Res 45(1):59–76

    Article  MathSciNet  MATH  Google Scholar 

  • Das S, Markowitz H, Scheid J, Statman M (2010) Portfolio optimization with mental accounts. J Financ Quant Anal 45:311–334

    Article  Google Scholar 

  • Deng XT, Li ZF, Wang SY (2005) A minimax portfolio selection strategy with equilibrium. Eur J Oper Res 166(1):278–292

    Article  MathSciNet  MATH  Google Scholar 

  • Fang Y, Lai KK, Wang SY (2006) Portfolio rebalancing model with transaction costs based on fuzzy decision theory. Eur J Oper Res 175(2):879–893

    Article  MATH  Google Scholar 

  • Frost PA, James ES (1988) For better performance: constrain portfolio weights. J Portfolio Manage 15(1):29–34

    Article  Google Scholar 

  • Fu C, Lari-Lavassani A, Li X (2010) Dynamic meanvariance portfolio selection with borrowing constraint. Eur J Oper Res 200(1):312–319

    Article  MATH  Google Scholar 

  • Gao J, Li D, Cui X, Wang S (2015) Time cardinality constrained mean-variance dynamic portfolio selection and market timing: A stochastic control approach. Automatica 54:91–99

    Article  MathSciNet  MATH  Google Scholar 

  • Georgescu I (2012) Possibility theory and the risk. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Green RC, Burton H (1992) When will mean-variance efficient portfolios be well diversified? The J Financ 47:1785–1809

    Article  Google Scholar 

  • Glpnar N, Rustem B (2007) Worst-case robust decisions for multi-period mean-variance portfolio optimization. Eur J Oper Res 183(3):981–1000

    Article  MathSciNet  MATH  Google Scholar 

  • Guo S, Yu L, Li X, Kar S (2016) Fuzzy multi-period portfolio selection with different investment horizons. Eur J Oper Res 254(3):1026–1035

    Article  MathSciNet  MATH  Google Scholar 

  • He XD, Zhou XY (2011) Portfolio choice under cumulative prospect theory: an analytical treatment. Manage Sci 57:315–331

    Article  MATH  Google Scholar 

  • Hu Y, Jin H, Zhou XY (2012) Time-inconsistent stochastic linear-quadratic control. SIAM J Control Optim 50(3):1548–1572

    Article  MathSciNet  MATH  Google Scholar 

  • Huang X (2008) Mean-entropy models for fuzzy portfolio selection. IEEE T Fuzzy Syst 16(4):1096–1101

    Article  Google Scholar 

  • Huang X (2012) Mean-variance models for portfolio selection subject to experts’ estimations. Expert Syst Appl 39(5):5887–5893

    Article  Google Scholar 

  • Inuiguchi M, Ramk J (2000) Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Set Syst 111(1):3–28

    Article  MathSciNet  MATH  Google Scholar 

  • Jobert A, Rogers LCG (2008) Valuations and dynamic convex risk measures. Math Financ 18(1):1–22

    Article  MathSciNet  MATH  Google Scholar 

  • Kahneman D, Tversky A (1979) Prospect theory: an analysis of decision under risk. Econometrica: J Econ Soc 263-291

  • Kamdem JS, Deffo CT, Fono LA (2012) Moments and semi-moments for fuzzy portfolio selection. Insur Math Econ 51(3):517–530

    Article  MathSciNet  MATH  Google Scholar 

  • Khalili-Damghani K, Sadi-Nezhad S, Tavana M (2013) Solving multi-period project selection problems with fuzzy goal programming based on TOPSIS and a fuzzy preference relation. Inform Sci 252:42–61

    Article  MathSciNet  MATH  Google Scholar 

  • Kydland FE, Prescott EC (1977) Rules rather than discretion: The inconsistency of optimal plans. The J Political Econ 473-491

  • Li D, Ng WL (2000) Optimal dynamic portfolio selection: multiperiod meanvariance formulation. Math Financ 10(3):387–406

    Article  MATH  Google Scholar 

  • Li X, Liu B (2006) A sufficient and necessary condition for credibility measures. Int J Uncertain Fuzz 14(5):527–535

    Article  MathSciNet  MATH  Google Scholar 

  • Li P, Liu B (2008) Entropy of credibility distributions for fuzzy variables. IEEE T Fuzzy Syst 1(16):123–129

    Google Scholar 

  • Li X, Zhang Y, Wong HS, Qin ZF (2009) A hybrid intelligent algorithm for portfolio selection problem with fuzzy returns. J Comput Appl Math 233(2):264–278

    Article  MathSciNet  MATH  Google Scholar 

  • Li X, Qin Z, Kar S (2010) Mean-variance-skewness model for portfolio selection with fuzzy returns. Eur J Oper Res 202(1):239–247

    Article  MATH  Google Scholar 

  • Li X. Credibilistic programming. Springer-Verlag;2013

  • Liu B, Liu YK (2002) Expected value of fuzzy variable and fuzzy expected value models. IEEE T Fuzzy Syst 10(4):445–450

    Article  Google Scholar 

  • Markowitz H (1952) Portfolio selection. J Financ 7(1):77–91

    Google Scholar 

  • Markowitz H, Todd P, Xu G, Yamane Y (1993) Computation of mean-semivariance efficient sets by the critical line algorithm. Ann Oper Res 45(1):307–317

    Article  MathSciNet  MATH  Google Scholar 

  • Markowitz HM, Todd GP, Sharpe WF (2000) Mean-variance analysis in portfolio choice and capital markets. John Wiley & Sons

  • Morey MR, Morey RC (1999) Mutual fund performance appraisals: a multi-horizon perspective with endogenous benchmarking. Omega-Int J Manage Sci 27(2):241–258

    Article  MathSciNet  Google Scholar 

  • Mossin J (1968) Optimal multiperiod portfolio policies. J Bus 215-229

  • Pal SK, Shankar BU, Mitra P (2005) Granular computing, rough entropy and object extraction. Pattern Recogn Lett 26(16):2509–2517

    Article  Google Scholar 

  • Patel NR, Subrahmanyam MG (1982) A simple algorithm for optimal portfolio selection with fixed transaction costs. Manage Sci 28(3):303–314

    Article  MathSciNet  MATH  Google Scholar 

  • Pedrycz W (2005) Knowledge-based clustering: from data to information granules. John Wiley & Sons

  • Pedrycz W, Song M (2012) Granular fuzzy models: a study in knowledge management in fuzzy modeling. Int J Approx Reason 53(7):1061–1079

    Article  MathSciNet  Google Scholar 

  • Pedrycz W, Homenda W (2013) Building the fundamentals of granular computing: a principle of justifiable granularity. Appl Soft Comput 13(10):4209–4218

    Article  Google Scholar 

  • Pedrycz W (2014) Allocation of information granularity in optimization and decision-making models: towards building the foundations of granular computing. Eur J Oper Res 232(1):137–145

    Article  Google Scholar 

  • Philippatos GC, Wilson CJ (1972) Entropy, market risk, and the selection of efficient portfolios. Appl Econ 4(3):209–220

    Article  Google Scholar 

  • Pnar M (2007) Robust scenario optimization based on downside-risk measure for multi-period portfolio selection. OR Spectrum 29(2):295–309

    Article  MathSciNet  Google Scholar 

  • Gianin ER (2006) Risk measures via g-expectations. Insur Math Econ 39(1):19–34

    Article  MathSciNet  MATH  Google Scholar 

  • Rudloff B, Street A, Vallado DM (2014) Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences. Eur J Oper Res 234(3):743–750

    Article  MathSciNet  MATH  Google Scholar 

  • Sadjadi SJ, Seyedhosseini SM, Hassanlou K (2011) Fuzzy multi period portfolio selection with different rates for borrowing and lending. Appl Soft Comput 11(4):3821–3826

    Article  Google Scholar 

  • Shannon CE (2001) A mathematical theory of communication. ACM SIGMOB Mob Comput Commun Rev 5(1):3–55

    Article  MathSciNet  Google Scholar 

  • Shen R, Zhang S (2008) Robust portfolio selection based on a multi-stage scenario tree. Eur J Oper Res 191(3):864–887

    Article  MathSciNet  MATH  Google Scholar 

  • Simonelli MR (2005) Indeterminacy in portfolio selection. Eur J Oper Res 163(1):170–176

    Article  MathSciNet  MATH  Google Scholar 

  • Skowron A, Stepaniuk J (2001) Information granules: towards foundations of granular computing. Int J Intell Syst 16(1):57–85

    Article  MATH  Google Scholar 

  • Strotz RH (1955) Myopia and inconsistency in dynamic utility maximization. The Rev Econ Stud 165-180

  • Tiwana A, Wang J, Keil M, Ahluwalia P (2007) The bounded rationality bias in managerial valuation of real options: Theory and evidence from it projects. Decis Sci 38(1):157–181

    Article  Google Scholar 

  • Wu WZ, Leung Y, Mi JS (2009) Granular computing and knowledge reduction in formal contexts. IEEE T Knowl Data En 21(10):1461–1474

    Article  Google Scholar 

  • Wu H, Chen H (2015) Nash equilibrium strategy for a multi-period mean-variance portfolio selection problem with regime switching. Econ Model 46:79–90

    Article  Google Scholar 

  • Xia Y, Liu B, Wang S, Lai KK (2000) A model for portfolio selection with order of expected returns. Comp Oper Res 27(5):409–422

    Article  MATH  Google Scholar 

  • Young T (2000) Data mining and machine oriented modeling: a granular computing approach. Appl Intell 13(2):113–124

    Article  Google Scholar 

  • Yu M, Takahashi S, Inoue H, Wang S (2010) Dynamic portfolio optimization with risk control for absolute deviation model. Eur J Oper Res 201(2):349–364

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf control 8(3):338–353

    Article  MATH  Google Scholar 

  • Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning-I. Inf Sci 8(3):199–249

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Set Syst 1:3–28

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1979) A theory of approximate reasoning. Mach Intell 9:149–194

    MathSciNet  Google Scholar 

  • Zhou JD, Li X, Pedrycz W (2016) Mean-semi-entropy models of fuzzy portfolio selection. IEEE T Fuzzy Syst 24:1627–1636

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 71371027), and Beijing Nova Program (No. Z14111000180000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Li, X., Kar, S. et al. Time consistent fuzzy multi-period rolling portfolio optimization with adaptive risk aversion factor. J Ambient Intell Human Comput 8, 651–666 (2017). https://doi.org/10.1007/s12652-017-0478-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-017-0478-4

Keywords

Navigation